GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Gruber, Thomas; Bamber, Jonathan L; Bierkens, Marc F P; Dobslaw, Henryk; Murböck, M; Thomas, M; van Beek, L P H; van Dam, T; Vermeersen, L L A; Visser, P N A M (2011): Simulation of the time-variable gravity field by means of coupled geophysical models. Earth System Science Data, 3(1), 19-35, https://doi.org/10.5194/essd-3-19-2011
    Publication Date: 2023-09-02
    Description: Time variable gravity fields, reflecting variations of mass distribution in the system Earth is one of the key parameters to understand the changing Earth. Mass variations are caused either by redistribution of mass in, on or above the Earth's surface or by geophysical processes in the Earth's interior. The first set of observations of monthly variations of the Earth gravity field was provided by the US/German GRACE satellite mission beginning in 2002. This mission is still providing valuable information to the science community. However, as GRACE has outlived its expected lifetime, the geoscience community is currently seeking successor missions in order to maintain the long time series of climate change that was begun by GRACE. Several studies on science requirements and technical feasibility have been conducted in the recent years. These studies required a realistic model of the time variable gravity field in order to perform simulation studies on sensitivity of satellites and their instrumentation. This was the primary reason for the European Space Agency (ESA) to initiate a study on ''Monitoring and Modelling individual Sources of Mass Distribution and Transport in the Earth System by Means of Satellites''. The goal of this interdisciplinary study was to create as realistic as possible simulated time variable gravity fields based on coupled geophysical models, which could be used in the simulation processes in a controlled environment. For this purpose global atmosphere, ocean, continental hydrology and ice models were used. The coupling was performed by using consistent forcing throughout the models and by including water flow between the different domains of the Earth system. In addition gravity field changes due to solid Earth processes like continuous glacial isostatic adjustment (GIA) and a sudden earthquake with co-seismic and post-seismic signals were modelled. All individual model results were combined and converted to gravity field spherical harmonic series, which is the quantity commonly used to describe the Earth's global gravity field. The result of this study is a twelve-year time-series of 6-hourly time variable gravity field spherical harmonics up to degree and order 180 corresponding to a global spatial resolution of 1 degree in latitude and longitude. In this paper, we outline the input data sets and the process of combining these data sets into a coherent model of temporal gravity field changes. The resulting time series was used in some follow-on studies and is available to anybody interested.
    Keywords: DATE/TIME; File name; Method comment; Uniform resource locator/link to file
    Type: Dataset
    Format: text/tab-separated-values, 180 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Atmospheres, 117 . D17111.
    Publication Date: 2019-09-23
    Description: The Solar Cycle and the Quasi-Biennial Oscillation are two major components of natural climate variability. Their direct and indirect influences in the stratosphere and troposphere are subject of a number of studies. The so-called ``top-down' mechanism describes how solar UV changes can lead to a significant enhancement of the small initial signal and corresponding changes in stratospheric dynamics. How the signal then propagates to the surface is still under investigation. We continue the ``top-down' analysis further down to the ocean and show the dynamical ocean response with respect to the solar cycle and the QBO. For this we use two 110-year chemistry climate model experiments from NCAR's Whole Atmosphere Community Climate Model (WACCM), one with a time varying solar cycle only and one with an additionally nudged QBO, to force an ocean general circulation model, GFZ's Ocean Model for Circulation and Tides (OMCT). We find a significant ocean response to the solar cycle only in combination with a prescribed QBO. Especially in the Southern Hemisphere we find the tendency to positive Southern Annular Mode (SAM) like pattern in the surface pressure and associated wind anomalies during solar maximum conditions. These atmospheric anomalies propagate into the ocean and induce deviations in ocean currents down into deeper layers, inducing an integrated sea surface height signal. Finally, limitations of this study are discussed and it is concluded that comprehensive climate model studies require a middle atmosphere as well as a coupled ocean to investigate and understand natural climate variability. Key Points: - Modeled oceanic solar cycle response depends on realistically modeled stratosphe - A realistically modeled stratospheric solar cycle response requires a QBO
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    GFZ, Helmholtz-Zentrum | [Bibliothek des Wiss.-Parks Albert Einstein] [Vertrieb], [Potsdam]
    Publication Date: 2021-03-29
    Description: thesis
    Keywords: 551 ; VBJ 000 ; Satellitenbildgeologie
    Language: German
    Type: monograph , publishedVersion
    Format: 113 S.
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-03-29
    Description: Recently released global gravity field models generated solely from CHAMP and GRACE satellite observations allow with an unprecedented accuracy and resolution the recovery of the mean sea surface topography from the difference between an altimetry-based mean sea surface height model and the gravity model's derived geoid. Here the CHAMP EIGEN-2 gravity field model, and the first GFZ GRACE gravity model, EIGEN-GRACE01S, are used. The mean sea surface height model has been compiled from four years'; worth of TOPEX altimeter data. To evaluate the accuracy and resolution limits of the CHAMP and GRACE geoids for the envisaged application, a low pass filter in the spatial domain with different cut-off wavelengths has been applied to the geoid and sea surface data before subtraction. The minimum wavelength, where noisy and erroneous features in the recovered sea surface topography are minimised, can be interpreted as an indicator for the best suited common spatial resolution. The EIGEN-2 model's geoid has been tested to have a resolution of 1800 km, which corresponds to a truncation degree of l = 22 in terms of spherical harmonics. Using the EIGEN-GRACE01S model, the resolution could be extended to 1000 km (l = 40). These boundaries can be attributed to the geoid's error, exceeding 2 cm in case of the CHAMP model, and in case of the GRACE model to spurious systematic signals increasing with increasing spherical harmonic degree. The calculated sea surface topography models have been used to derive absolute geostrophic sea surface velocities. An error propagation shows that the requirement of 1 cm/s for geoid induced velocity errors is fulfilled at the given resolutions for all latitudes excluding a narrow equatorial band. Maximum geostrophic velocities are derived in the 1000 km-resolution model for the Kuroshio region with 40 cm/s, and for the Gulf Stream east off Cape Hatteras with 25 cm/s.
    Description: report
    Keywords: 551 ; TQI 000 ; Geophysikalische Satellitenfernerkundung
    Language: English
    Type: article , publishedVersion
    Format: 22 S.
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...