GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Newark :John Wiley & Sons, Incorporated,
    Keywords: Geobiology. ; Biosphere. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (481 pages)
    Edition: 1st ed.
    ISBN: 9781118280867
    DDC: 508
    Language: English
    Note: Intro -- FUNDAMENTALS OF GEOBIOLOGY -- Contents -- Contributors -- 1. What is Geobiology? -- 1.1 Introduction -- 1.2 Life interacting with the Earth -- 1.3 Pattern and process in geobiology -- 1.4 New horizons in geobiology -- References -- 2. The Global Carbon Cycle: Biological Processes -- 2.1 Introduction -- 2.2 A brief primer on redox reactions -- 2.3 Carbon as a substrate for biological reactions -- 2.4 The evolution of photosynthesis -- 2.5 The evolution of oxygenic phototrophs -- 2.6 Net primary production -- 2.7 What limits NPP on land and in the ocean? -- 2.8 Is NPP in balance with respiration? -- 2.9 Conclusions and extensions -- References -- 3. The Global Carbon Cycle: Geological Processes -- 3.1 Introduction -- 3.2 Organic carbon cycling -- 3.3 Carbonate cycling -- 3.4 Mantle degassing -- 3.5 Metamorphism -- 3.6 Silicate weathering -- 3.7 Feedbacks -- 3.8 Balancing the geological carbon cycle -- 3.9 Evolution of the geological carbon cycle through Earth's history: proxies and models -- 3.10 The geological C cycle through time -- 3.11 Limitations and perspectives -- References -- 4. The Global Nitrogen Cycle -- 4.1 Introduction -- 4.2 Geological nitrogen cycle -- 4.3 Components of the global nitrogen cycle -- 4.4 Nitrogen redox chemistry -- 4.5 Biological reactions of the nitrogen cycle -- 4.6 Atmospheric nitrogen chemistry -- 4.7 Summary and areas for future research -- References -- 5. The Global Sulfur Cycle -- 5.1 Introduction -- 5.2 The global sulfur cycle from two perspectives -- 5.3 The evolution of S metabolisms -- 5.4 The interaction of S with other biogeochemical cycles -- 5.5 The evolution of the S cycle -- 5.6 Closing remarks -- Acknowledgements -- References -- 6. The Global Iron Cycle -- 6.1 Overview -- 6.2 The inorganic geochemistry of iron: redox and reservoirs -- 6.3 Iron in modern biology and biogeochemical cycles. , 6.4 Iron through time -- 6.5 Summary -- Acknowledgements -- References -- 7. The Global Oxygen Cycle -- 7.1 Introduction -- 7.2 The chemistry and biochemistry of oxygen -- 7.3 The concept of redox balance -- 7.4 The modern O2 cycle -- 7.5 Cycling of O2 and H2 on the early Earth -- 7.6 Synthesis: speculations about the timing and cause of the rise of atmospheric O2 -- References -- 8. Bacterial Biomineralization -- 8.1 Introduction -- 8.2 Mineral nucleation and growth -- 8.3 How bacteria facilitate biomineralization -- 8.4 Iron oxyhydroxides -- 8.5 Calcium carbonates -- Acknowledgements -- References -- 9. Mineral-Organic-Microbe Interfacial Chemistry -- 9.1 Introduction -- 9.2 The mineral surface (and mineral-bio interface) and techniques for its study -- 9.3 Mineral-organic-microbe interfacial processes: some key examples -- Acknowledgements -- References -- 10. Eukaryotic Skeletal Formation -- 10.1 Introduction -- 10.2 Mineralization by unicellular organisms -- 10.3 Mineralization by multicellular organisms -- 10.4 A brief history of skeletons -- 10.5 Summary -- Acknowledgements -- References -- 11. Plants and Animals as Geobiological Agents -- 11.1 Introduction -- 11.2 Land plants as geobiological agents -- 11.3 Animals as geobiological agents -- 11.4 Conclusions -- Acknowledgements -- References -- 12. A Geobiological View of Weathering and Erosion -- 12.1 Introduction -- 12.2 Effects of biota on weathering -- 12.3 Effects of organic molecules on weathering -- 12.4 Organomarkers in weathering solutions -- 12.5 Elemental profiles in regolith -- 12.6 Time evolution of profile development -- 12.7 Investigating chemical, physical, and biological weathering with simple models -- 12.8 Conclusions -- Acknowledgements -- References -- 13. Molecular Biology's Contributions to Geobiology -- 13.1 Introduction -- 13.2 Molecular approaches used in geobiology. , 13.3 Case study: anaerobic oxidation of methane -- 13.4 Challenges and opportunities for the next generation -- Acknowledgements -- References -- 14. Stable Isotope Geobiology -- 14.1 Introduction -- 14.2 Isotopic notation and the biogeochemical elements -- 14.3 Tracking fractionation in a system -- 14.4 Applications -- 14.5 Using isotopes to ask a geobiological question in deep time -- 14.6 Conclusions -- Acknowledgements -- References -- 15. Biomarkers: Informative Molecules for Studies in Geobiology -- 15.1 Introduction -- 15.2 Origins of biomarkers -- 15.3 Diagenesis -- 15.4 Isotopic compositions -- 15.5 Stereochemical considerations -- 15.6 Lipid biosynthetic pathways -- 15.7 Classification of lipids -- 15.8 Lipids diagnostic of Archaea -- 15.9 Lipids diagnostic of Bacteria -- 15.10 Lipids of Eukarya -- 15.11 Preservable cores -- 15.12 Outlook -- Acknowledgements -- References -- 16. The Fossil Record of Microbial Life -- 16.1 Introduction -- 16.2 The nature of Earth's early microbial record -- 16.3 Paleobiological inferences from microfossil morphology -- 16.4 Inferences from microfossil chemistry and ultrastructure (new technologies) -- 16.5 Inferences from microbialites -- 16.6 A brief history, with questions -- 16.7 Conclusions -- Acknowledgements -- References -- 17. Geochemical Origins of Life -- 17.1 Introduction -- 17.2 Emergence as a unifying concept in origins research -- 17.3 The emergence of biomolecules -- 17.4 The emergence of macromolecules -- 17.5 The emergence of self-replicating systems -- 17.6 The emergence of natural selection -- 17.7 Three scenarios for the origins of life -- Acknowledgements -- References -- 18. Mineralogical Co-evolution of the Geosphere and Biosphere -- 18.1 Introduction -- 18.2 Prebiotic mineral evolution I - evidence from meteorites -- 18.3 Prebiotic mineral evolution II - crust and mantle reworking. , 18.4 The anoxic Archean biosphere -- 18.5 The Great Oxidation Event -- 18.6 A billion years of stasis -- 18.7 The snowball Earth -- 18.8 The rise of skeletal mineralization -- 18.9 Summary -- Acknowledgements -- References -- 19. Geobiology of the Archean Eon -- 19.1 Introduction -- 19.2 Carbon cycle -- 19.3 Sulfur cycle -- 19.4 Iron cycle -- 19.5 Oxygen cycle -- 19.6 Nitrogen cycle -- 19.7 Phosphorus cycle -- 19.8 Bioaccretion of sediment -- 19.9 Bioalteration -- 19.10 Conclusions -- References -- 20. Geobiology of the Proterozoic Eon -- 20.1 Introduction -- 20.2 The Great Oxidation Event -- 20.3 The early Proterozoic: Era geobiology in the wake of the GOE -- 20.4 The mid-Proterozoic: a last gasp of iron formations, deep ocean anoxia, the 'boring' billion, and a mid-life crisis -- 20.5 The history of Proterozoic life: biomarker records -- 20.6 The history of Proterozoic life: mid-Proterozoic fossil record -- 20.7 The late Proterozoic: a supercontinent, oxygen, ice, and the emergence of animals -- 20.8 Summary -- Acknowledgements -- References -- 21. Geobiology of the Phanerozoic -- 21.1 The beginning of the Phanerozoic Eon -- 21.2 Cambrian mass extinctions -- 21.3 The terminal Ordovician mass extinction -- 21.4 The impact of early land plants -- 21.5 Silurian biotic crises -- 21.6 Devonian mass extinctions -- 21.7 Major changes of the global ecosystem in Carboniferous time -- 21.8 Low-elevation glaciation near the equator -- 21.9 Drying of climates -- 21.10 A double mass extinction in the Permian -- 21.11 The absence of recovery in the early Triassic -- 21.12 The terminal Triassic crisis -- 21.13 The rise of atmospheric oxygen since early in Triassic time -- 21.14 The Toarcian anoxic event -- 21.15 Phytoplankton, planktonic foraminifera, and the carbon cycle -- 21.16 Diatoms and the silica cycle -- 21.17 Cretaceous climates. , 21.18 The sudden Paleocene-Eocene climatic shift -- 21.19 The cause of the Eocene-Oligocene climatic shift -- 21.20 The re-expansion of reefs during Oligocene time -- 21.21 Drier climates and cascading evolutionary radiations on the land -- References -- 22. Geobiology of the Anthropocene -- 22.1 Introduction -- 22.2 The Anthropocene -- 22.3 When did the Anthropocene begin? -- 22.4 Geobiology and human population -- 22.5 Human appropriation of the Earth -- 22.6 The carbon cycle and climate of the Anthropocene -- 22.7 The future of geobiology -- Acknowledgements -- References -- Index -- Colour plates.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-09-01
    Description: Many infaunal marine invertebrates produce mucous excretions, composed primarily of the glycoprotein mucin, that play important roles in burrow stabilization. As with other biopolymers, the ionization of mucin provides highly reactive organic ligands that enable the sorption of metal cations from seawater. Owing to the difficulties in its isolation, however, the specific role of mucin in the adsorptive properties of animal secretions in marine environments is poorly understood. Here we apply a surface complexation approach to model proton and Cd adsorption behavior of partially purified Type III porcine gastric mucin (PGM), a commercially available analog to natural infaunal mucus. FTIR, proton and cadmium adsorption experiments indicate that Type III PGM mimics the acid-base and metal complexation behavior of natural mucous gels excreted by terebellid polychaete worms. At marine pH, nearly two-thirds of the total ligands in mucin-type glycoproteins are deprotonated and thus available to participate in metal cation adsorption reactions. Importantly, the concentration of available organic ligands in mucin exceeds (by up to 5 times) that of a variety of other metal-reactive organic compounds comprising the organic fraction of marine sediments. A substantial fraction of the dissolved organic matter in the bioturbated zone of marine sediments occurs in the form of mucin-associated glycoproteins; the availability of such organic materials may strongly influence the distribution of cations at the burrow margin.
    Print ISSN: 0883-1351
    Electronic ISSN: 0883-1351
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-01
    Description: The phosphorus composition of banded-iron formations (BIFs) has been used as a proxy for Precambrian seawater composition and the paleoeredox state of Earth's surface environment. However, it is unclear whether the phosphorus in BIFs originally entered the sediment as a sorbed component of the iron oxyhydroxide particles, or whether it was incorporated into the biomass of marine phytoplankton. We conducted high-resolution mineral analyses and report here the first detection of an Fe(III) acetate salt, as well as nanocrystals of apatite in association with magnetite, in the 2.48 Ga Dales Gorge Member of the Brockman Iron Formation (a BIF), Hamersley, Western Australia. The clusters of apatite are similar in size and morphology to biogenic apatite crystals resulting from biomass decay in Phanerozoic marine sediments, while the formation of an Fe(III) acetate salt and magnetite not only implies the original presence of biomass in the BIF sediments, but also that organic carbon likely served as an electron donor during bacterial Fe(III) reduction. This study is important because it suggests that phytoplankton may have played a key role in the transfer of phosphorus (and other trace elements) from the photic zone to the seafloor.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-04-01
    Description: As an essential nutrient and energy source for the growth of microbial organisms, iron is metabolically cycled between reduced and oxidized chemical forms. The resulting flow of electrons is invariably tied to reactions with other redox-sensitive elements, including oxygen, carbon, nitrogen, and sulfur. Therefore, iron is intimately involved in the geochemistry, mineralogy, and petrology of modern aquatic systems and their associated sediments, particulates, and porewaters. In the geological past, iron played an even greater role in marine geochemistry, as evidenced by the vast deposits of Precambrian iron-rich sediments, the "banded iron formations." These deposits are now being used as proxies for understanding the chemical composition of the ancient oceans and atmosphere.
    Print ISSN: 1811-5209
    Electronic ISSN: 1811-5217
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Mineralogical Society of America
    Publication Date: 2011-04-01
    Description: Microbes are intimately involved in the iron cycle. First, acquisition of iron by microorganisms for biochemical requirements is a key process in the iron cycle in oxygenated, circumneutral pH environments, where the solubility of Fe(III) (oxyhydr)oxides is extremely low. Second, a number of aerobic (using O2) and anaerobic (living in the absence of O2) autotrophic bacteria gain energy for growth from the oxidation of dissolved and solid-phase Fe(II) compounds to Fe(III) (oxyhydr)oxides. Third, heterotrophic Fe(III)-reducing bacteria close the chemical loop by reducing solid-phase Fe(III) minerals back to dissolved and solid-phase Fe(II). Together these metabolic processes control the partitioning of the Earth's fourth most abundant crustal element, and they are additionally tied to the cycling of several major nutrients (e.g. carbon, oxygen, nitrogen, sulfur) and trace elements (e.g. phosphorus, nickel) in modern and ancient environments.
    Print ISSN: 1811-5209
    Electronic ISSN: 1811-5217
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2012. This is the author's version of the work. It is posted here by permission of John Wiley & Sons for personal use, not for redistribution. The definitive version was published in Geobiology 11 (2013): 295-306, doi:10.1111/gbi.12036.
    Description: Here we explore enrichments in paleomarine Zn as recorded by authigenic iron oxides including Precambrian iron formations, ironstones and Phanerozoic hydrothermal exhalites. This compilation of new and literature-based iron formation analyses track dissolved Zn abundances and constrain the magnitude of the marine reservoir over geological time. Overall, the iron formation record is characterized by a fairly static range in Zn/Fe ratios throughout the Precambrian, consistent with the shale record (Scott et al., 2013, Nature Geoscience, 6, 125-128). When hypothetical partitioning scenarios are applied to this record, paleomarine Zn concentrations within about an order of magnitude of modern are indicated. We couple this examination with new chemical speciation models used to interpret the iron formation record. We present two scenarios: first, under all but the most sulfidic conditions and with Zn binding organic ligand concentrations similar to modern oceans, the amount of bioavailable Zn remained relatively unchanged through time. Late proliferation of Zn in eukaryotic metallomes has previously been linked to marine Zn biolimitation, but under this scenario, the expansion in eukaryotic Zn metallomes may be better linked to biologically intrinsic evolutionary factors. In this case zinc’s geochemical and biological evolution may be decoupled, and viewed as a function of increasing need for genome regulation and diversification of Zn-binding transcription factors. In the second scenario, we consider Archean organic ligand complexation in such excess that it may render Zn bioavailability low. However, this is dependent on Zn organic ligand complexes not being bioavailable, which remains unclear. In this case, although bioavailability may be low, sphalerite precipitation is prevented, thereby maintaining a constant Zn inventory throughout both ferruginous and euxinic conditions. These results provide new perspectives and constraints 50 on potential couplings between the trajectory of biological and marine geochemical coevolution.
    Description: This work was supported by a NSERC Discovery Grant to KOK, a NSERC PDF to SVL, a NSERC CGSM to LJR, and an NSF-EAR-PDF to NJP. MAS acknowledges support from the Gordon and Betty Moore Foundation Grant #2724. This work was also supported by grants from the Deutsche Forschungsgemeinschaft (DFG) to A.K. (KA 1736/4-1 and 12-1).
    Keywords: Paleomarine zinc ; Metallome evolution ; Metalloenzymes ; Eukaryotic evolution ; Iron formations
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Format: application/vnd.ms-excel
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...