GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: Forschungsbericht ; Implantat ; Titandioxid ; Beschichtung ; Histokompatibilität ; Mikrosensor ; Blut ; Kalium
    Type of Medium: Online Resource
    Pages: Online-Ressource (22 S., 1,92 MB) , Ill., graph. Darst.
    Language: German
    Note: Förderkennzeichen BMBF 16SV5463. - Verbund-Nr. 01080826 , Unterschiede zwischen dem gedruckten Dokument und der elektronischen Ressource können nicht ausgeschlossen werden , Systemvoraussetzungen: Acrobat reader.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    Keywords: Porous materials. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (314 pages)
    Edition: 1st ed.
    ISBN: 9783319118949
    Series Statement: Terrestrial Environmental Sciences Series
    DDC: 620.116
    Language: English
    Note: Intro -- Contents -- Contributing Authors -- 1 Introduction -- 1.1 Motivation -- 1.2 Application Areas -- 1.3 Scope of This Book -- References -- Part I Closed Form Solutions -- 2 Verification Tests -- 2.1 Heat Conduction -- 2.1.1 A 1D Steady-State Temperature Distribution, Boundary Conditions of 1st Kind -- 2.1.2 A 1D Steady-State Temperature Distribution, Boundary Conditions of 1st and 2nd Kind -- 2.1.3 A 2D Steady-State Temperature Distribution, Boundary Conditions of 1st Kind -- 2.1.4 A 2D Steady-State Temperature Distribution, Boundary Conditions of 1st and 2nd Kind -- 2.1.5 A 3D Steady-State Temperature Distribution -- 2.1.6 A Transient 1D Temperature Distribution, Time-Dependent Boundary Conditions of 1st Kind -- 2.1.7 Transient 1D Temperature Distributions, Time-Dependent Boundary Conditions of 2nd Kind -- 2.1.8 Transient 1D Temperature Distributions, Non-Zero Initial Temperature, Boundary Conditions of 1st and 2nd Kind -- 2.1.9 A Transient 2D Temperature Distribution, Non-Zero Initial Temperature, Boundary Conditions of 1st and 2nd Kind -- 2.2 Liquid Flow -- 2.2.1 A 1D Steady-State Pressure Distribution, Boundary Conditions of 1st Kind -- 2.2.2 A 1D Steady-State Pressure Distribution, Boundary Conditions of 1st and 2nd Kind -- 2.2.3 A 2D Steady-State Pressure Distribution, Boundary Conditions of 1st Kind -- 2.2.4 A 2D Steady-State Pressure Distribution, Boundary Conditions of 1st and 2nd Kind -- 2.2.5 A 3D Steady-State Pressure Distribution -- 2.2.6 A Hydrostatic Pressure Distribution -- 2.2.7 A Transient 1D Pressure Distribution, Time-Dependent Boundary Conditions of 1st Kind -- 2.2.8 Transient 1D Pressure Distributions, Time-Dependent Boundary Conditions of 2nd Kind -- 2.2.9 Transient 1D Pressure Distributions, Non-Zero Initial Pressure, Boundary Conditions of 1st and 2nd Kind. , 2.2.10 A Transient 2D Pressure Distribution, Non-Zero Initial Pressure, Boundary Conditions of 1st and 2nd Kind -- 2.3 Gas Flow -- 2.3.1 A 1D Steady-State Gas Pressure Distribution, Boundary Conditions of 1st Kind -- 2.3.2 A 1D Steady-State Gas Pressure Distribution, Boundary Conditions of 1st and 2nd Kind -- 2.3.3 A 2D Steady-State Gas Pressure Distribution -- 2.3.4 A 3D Steady-State Gas Pressure Distribution -- 2.4 Deformation Processes -- 2.4.1 An Elastic Beam Undergoes Axial Load -- 2.4.2 An Elastic Plate Undergoes Simple Shear -- 2.4.3 An Elastic Cuboid Undergoes Load Due to Gravity -- 2.4.4 Stresses Relax in a Deformed Cube of Norton Material -- 2.4.5 A Cube of Norton Material Creeps Under Constant Stress -- 2.4.6 A Cube of Norton Material Undergoes Tensile Strain Increasing Linearly with Time -- 2.4.7 A Cube of Norton Material Undergoes Compressive Stress Increasing Linearly with Time -- 2.5 Mass Transport -- 2.5.1 Solute Transport Along Permeable Beams, Hydraulic and Solute Boundary Conditions of 1st and 2nd Kind -- 2.5.2 Solute Transport Along Permeable Beams with an Inert, a Decaying, and an Adsorbing Solute, Time-Dependent Boundary Conditions of 1st Kind -- 2.5.3 A Transient 2D Solute Distribution -- 2.6 Hydrothermal Processes -- 2.6.1 A Transient 1D Temperature Distribution in a Moving Liquid -- 2.6.2 A Transient 2D Temperature Distribution in a Moving Liquid -- 2.7 Hydromechanical Coupling -- 2.7.1 A Permeable Elastic Beam Deforms Under Steady-State Internal Liquid Pressure -- 2.7.2 A Permeable Elastic Square Deforms Under Constant Internal Liquid Pressure -- 2.7.3 A Permeable Elastic Cube Deforms Under Constant Internal Liquid Pressure -- 2.7.4 A Permeable Elastic Cuboid Undergoes Static Load Due to Gravity and Hydrostatic Liquid Pressure. , 2.7.5 A Permeable Elastic Beam Deforms Under Transient Internal Liquid Pressure. Specified Boundary Conditions are Time-Dependent and of 1st Kind -- 2.7.6 A Permeable Elastic Beam Deforms Under Transient Internal Liquid Pressure. Specified Boundary Conditions are Time-Dependent and of 1st and 2nd Kind -- 2.7.7 Biot's 1D Consolidation Problem: Squeezing of a Pressurized Column Causes the Liquid to Discharge from the Domain -- 2.8 Thermomechanics -- 2.8.1 An Elastic Beam Deforms Due to an Instant Temperature Change -- 2.8.2 An Elastic Square Deforms Due to an Instant Temperature Change -- 2.8.3 An Elastic Cube Deforms Due to an Instant Temperature Change -- 2.8.4 An Elastic Cuboid Undergoes Load Due to Gravity and Instant Temperature Change -- 2.8.5 An Elastic Beam Deforms Due to a Transient Temperature Change. Temperature Boundary Conditions are Time-Dependent and of 1st Kind -- 2.8.6 Elastic Beams Deform Due to a Transient Temperature Change. Temperature Boundary Conditions are Time-Dependent and of 2nd Kind -- 2.8.7 Stresses Relax in a Cube of Norton Material Undergoing an Instant Temperature Change -- 2.9 Thermo-Hydro-Mechanical Coupling -- 2.9.1 A Permeable Elastic Cuboid Deforms Due to Gravity, Internal Liquid Pressure, and Instant Temperature Change -- 2.9.2 A Permeable Elastic Beam Deforms Due to Cooling Liquid Injection -- References -- Part II Single Processes -- 3 Groundwater Flow---Theis' Revisited -- 3.1 Problem Definition -- 3.2 Theis' 1.5D and 2.5D -- 3.3 Theis' 2D -- 3.4 Theis' 3D -- 3.5 Results -- Reference -- 4 Richards Flow -- 4.1 Comparison with Differential Transform Method (DTM) -- 4.2 Undrained Heating -- 4.2.1 Definition (1D) -- 4.2.2 Heating a Saturated Sample -- 4.2.3 Heating an Unsaturated Sample -- 4.2.4 Results -- References -- 5 Multi-Componential Fluid Flow -- 5.1 Basic Equations -- 5.1.1 Mass Balance Equation. , 5.1.2 Fractional Mass Transport Equation -- 5.1.3 Heat Transport Equation -- 5.1.4 Equation of State -- 5.2 Examples -- 5.2.1 Tracer Test -- 5.2.2 Bottom Hole Pressure -- 5.2.3 Plume Migration -- 5.2.4 CO2 Leakage Through Abondoned Well -- 5.2.5 Thermo-Chemical Energy Storage -- References -- 6 Random Walk Particle Tracking -- 6.1 Particle Tracking in Porous Medium -- 6.1.1 Particle Tracking in Porous Medium: 1D Case Study -- 6.1.2 Particle Tracking in Porous Medium: 2D Case Study -- 6.1.3 Particle Tracking in Porous Medium: 3D Case Study -- 6.2 Particle Tracking in Pore Scale -- 6.2.1 Particle Tracking in Pore Scale: 2D Case Study -- 6.2.2 Particle Tracking in Pore Scale: 3D Case Study -- 6.3 Particle Tracking with Different Flow Processes -- 6.3.1 Forchheimer Term -- 6.3.2 Forchheimer Flow in 1D Porous Medium -- 6.3.3 Groundwater Flow Regimes -- 6.4 Particle Tracking in Fractured Porous Media -- 6.4.1 Uncertainty in Flow, Preferential Flow -- References -- 7 Mechanical Processes -- 7.1 Theory and Implementation -- 7.2 Deformation of a Steel Tubing -- 7.2.1 Analytical Solution---Linear Elasticity -- 7.2.2 Numerical Solution -- 7.3 Deformation of a Thick-Walled, Hollow Sphere -- 7.3.1 Analytical Solution---Linear Elasticity -- 7.3.2 Numerical Solution---Linear Elasticity -- 7.3.3 Analytical Solution---Elastoplasticity -- 7.3.4 Numerical Solution---Elastoplastic Deformation of a Sphere -- 7.4 Deformation of an Artificial Salt Cavern -- 7.4.1 Linear Elastic Material -- 7.4.2 Elastoplastic Material -- References -- Part III Coupled Processes -- 8 Density-Dependent Flow -- 8.1 Haline Setups -- 8.1.1 Development and Degregation of a Freshwater Lens -- 8.2 Thermohaline Setups -- 8.2.1 Stability in Rayleigh Convection -- References -- 9 Multiphase Flow and Transport with OGS-ECLIPSE -- 9.1 Introduction -- 9.2 Test Cases. , 9.2.1 Two-Phase Flow with Two-Phase Transport -- 9.2.2 Gas Phase Partitioning -- References -- 10 Coupled THM Processes -- 10.1 HM/THM Processes in a Faulted Aquifer -- 10.1.1 Definition -- 10.1.2 Initial and Boundary Conditions -- 10.1.3 Material Properties -- 10.1.4 Results -- 10.1.5 Initial Conditions Effects -- 10.1.6 Temperature Effects THM Simulation -- 10.2 Injection Induced Hydromechanical (HM) Processes -- 10.2.1 Definition -- 10.2.2 Solution -- 10.2.3 Model Description -- 10.2.4 Results -- 10.3 AnSichT THM Test Case -- 10.3.1 Definition -- 10.3.2 Results -- 10.4 Consolidation Under Two-Phase Flow Condition: Five Spot Example -- References -- 11 Thermo-Mechanics: Stress-Induced Heating of Elastic Solids -- 11.1 Theory -- 11.2 Problem Definition -- 11.3 Analytical Solution -- 11.4 Numerical Solution -- 11.5 Results -- References -- 12 Reactive Transport -- 12.1 Kinetic Dissolution of Non-aqueous Phase Liquids -- 12.1.1 Hansen and Kueper Benchmark -- 12.2 Kinetic Mineral Dissolution/Precipitation -- 12.2.1 Simulation of a Kinetic Calcite/Dolomite Dissolution Front -- 12.3 Local Thermal Nonequilibrium and Gas--Solid Reactions -- 12.3.1 Introduction -- 12.3.2 Interphase Heat Transfer -- 12.3.3 Interphase Mass Transfer and Heat of Reaction -- 12.3.4 Interphase Friction -- 12.3.5 Steady State Heat Conduction with Heat Generation and Convection Boundary Conditions -- References -- Appendix AIntroduction to OpenGeoSys (OGS):OGS-Overview -- Appendix BOGS-Software Engineering -- Appendix CData Preprocessing and Model Setupwith OGS -- Appendix DGINA-OGS -- Appendix EScientific Visualization and Virtual Reality -- Appendix FOGS High-Performance-Computing.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    London :CRC Press LLC,
    Keywords: Bioinformatics. ; Ontologies (Information retrieval). ; Electronic books.
    Description / Table of Contents: Introduction to Bio-Ontologies explores the computational background of ontologies. Emphasizing computational and algorithmic issues surrounding bio-ontologies, this self-contained text helps readers understand ontological algorithms and their applications. The first part of the book defines ontology and bio-ontologies. It also explains the importance of mathematical logic for understanding concepts of inference in bio-ontologies, discusses the probability and statistics topics necessary for understanding ontology algorithms, and describes ontology languages, including OBO (the preeminent language for bio-ontologies), RDF, RDFS, and OWL. The second part covers significant bio-ontologies and their applications. The book presents the Gene Ontology; upper-level ontologies, such as the Basic Formal Ontology and the Relation Ontology; and current bio-ontologies, including several anatomy ontologies, Chemical Entities of Biological Interest, Sequence Ontology, Mammalian Phenotype Ontology, and Human Phenotype Ontology. The third part of the text introduces the major graph-based algorithms for bio-ontologies. The authors discuss how these algorithms are used in overrepresentation analysis, model-based procedures, semantic similarity analysis, and Bayesian networks for molecular biology and biomedical applications. With a focus on computational reasoning topics, the final part describes the ontology languages of the Semantic Web and their applications for inference. It covers the formal semantics of RDF and RDFS, OWL inference rules, a key inference algorithm, the SPARQL query language, and the state of the art for querying OWL ontologies. Web Resource Software and data designed to complement material in the text are available on the book's website: http://bio-ontologies-book.org The site provides the R Robo package developed for the book, along with a
    Type of Medium: Online Resource
    Pages: 1 online resource (514 pages)
    Edition: 1st ed.
    ISBN: 9781439836668
    Series Statement: Chapman and Hall/CRC Mathematical and Computational Biology Series
    DDC: 610.285
    Language: English
    Note: Front Cover -- Dedication -- Preface -- Contents -- List of Figures -- List of Tables -- Symbol Description -- I. Basic Concepts -- 1. Ontologies and Applications of Ontologies in Biomedicine -- 2. Mathematical Logic and Inference -- 3. Probability Theory and Statistics for Bio-Ontologies -- 4. Ontology Languages -- II. Bio-Ontologies -- 5. The Gene Ontology -- 6. Upper-Level Ontologies -- 7. A Selective Survey of Bio-Ontologies -- III. Graph Algorithms for Bio-Ontologies -- 8. Overrepresentation Analysis -- 9. Model-Based Approaches to GO Analysis -- 10. Semantic Similarity -- 11. Frequency-Aware Bayesian Network Searches in Attribute Ontologies -- IV. Inference in Ontologies -- 12. Inference in the Gene Ontology -- 13. RDFS Semantics and Inference -- 14. Inference in OWL Ontologies -- 15. Algorithmic Foundations of Computational Inference -- 16. SPARQL -- Appendices -- A. An Overview of R -- B. Information Content and Entropy -- C. W3C Standards: XML, URIs, and RDF -- D. W3C Standards: OWL -- Glossary -- C -- D -- F -- H -- J -- M -- N -- O -- P -- Q -- R -- T -- W -- Bibliography.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-05-01
    Description: Background: The thermal effect on the subsurface of a large borehole thermal energy store (BTES) has been investigated by coupling measured rock properties with an enhanced FEFLOW simulation. Methods: The finite element model has been validated against measured data from a 2-year operation period. The thermal changes in the subsurface have been predicted by simulation for a 30-year operation period. The model is based on three 80-m core sections drilled in Triassic carbonates, which have been analyzed in detail with respect to lithology, facies, and thermal and hydraulic parameters. Results: The model shows thermal effects of the BTES on the subsurface at a distance of approximately 350 m after 10 years and a distance of approximately 850 m after 30 years of operation. At a distance of 100 m, the temperature of the subsurface rises by 2 K after 30 years. Conclusions: The simulation describes the real BTES in an accurate manner and is suited for predicting the thermal changes in the subsurface for long-term operational durations.
    Electronic ISSN: 2195-9706
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Geosciences
    Published by SpringerOpen
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...