GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-02-06
    Description: Simultaneous analysis of carbon, nitrogen and sulphur stable isotope ratios was applied in this pilot study to examine the food web of a Zostera marina L. system in the western Baltic Sea. Samples of three potential food sources: eelgrass, epiphytic algae and seston, as well as 69 consumer species were collected during the growing season of Z. marina from March to September 2011. The measured δ13C values of epiphytes (-14.1‰ ± 1.8 SD) were close to δ13C values of eelgrass (-11.6‰ ± 1.8 SD), impeding a clear distinction of those two carbon sources, whereas seston δ13C values (-20.9‰ ± 3.5 SD) were clearly different. This frequently encountered problem was solved by the additional use of δ34S, which resulted in easily distinguishable values for sediment and seawater derived sulphur. Values of primary producer δ34S ranged from 5.6‰ (± 2.3 SD) for Z. marina leaves to 14.2‰ (± 1.6 SD) for epiphytes and 11.9‰ (± 3.3 SD) for seston. The combination of δ34S and δ13C values made a separation of carbon sources possible and enabled the allocation of potential food sources to consumers and a description of their trophic relationships. The data of stable isotope ratio analysis of this eelgrass community strongly indicate a food web based on epiphyte and seston production. δ15N values show a food web consisting of large numbers of generalists and a high degree of omnivory amongst the consumer species analysed. This implies an occupation of every trophic position possible, which is supported by a continuous distribution of δ15N values. Previously described eelgrass food webs may have to be re-evaluated to include sulfur in order to provide a clear picture on primary carbon sources.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Inter Research
    In:  Marine Ecology Progress Series, 486 . pp. 37-46.
    Publication Date: 2018-06-25
    Description: Changing seawater chemistry towards reduced pH as a result of increasing atmospheric carbon dioxide (CO2) is affecting oceanic organisms, particularly calcifying species. Responses of non-calcifying consumers are highly variable and mainly mediated through indirect ocean acidification effects induced by changing the biochemical content of their prey, as shown within single species and simple 2-trophic level systems. However, it can be expected that indirect CO2 impacts observed at the single species level are compensated at the ecosystem level by species richness and complex trophic interactions. A dampening of CO2-effects can be further expected for coastal communities adapted to strong natural fluctuations in pCO2, typical for productive coastal habitats. Here we show that a plankton community of the Kiel Fjord was tolerant to CO2 partial pressure (pCO2) levels projected for the end of this century (〈1400 µatm), and only subtle differences were observed at the extremely high value of 4000 µatm. We found similar phyto- and microzooplankton biomass and copepod abundance and egg production across all CO2 treatment levels. Stoichiometric phytoplankton food quality was minimally different at the highest pCO2 treatment, but was far from being potentially limiting for copepods. These results are in contrast to studies that include only a single species, which observe strong indirect CO2 effects for herbivores and suggest limitations of biological responses at the level of organism to community. Although this coastal plankton community was highly tolerant to high fluctuations in pCO2, increase in hypoxia and CO2 uptake by the ocean can aggravate acidification and may lead to pH changes outside the range presently experienced by coastal organisms.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Inter Research
    In:  Marine Ecology Progress Series, 401 . pp. 77-85.
    Publication Date: 2018-06-19
    Description: Traditionally, consumer–prey interactions have been considered as purely negative, but herbivores may have positive effects on plants and their productivity. Grazing may enhance prey biomass-specific productivity by directly or indirectly reducing the competition for light, nutrients, and space. We studied the effect of 4 common mesograzers, the isopod Idotea baltica, the amphipod Gammarus oceanicus, and the gastropods Littorina littorea and Rissoa membranacea on epiphytes in an eelgrass Zostera marina L. system. Eelgrass was grown in laboratory mesocosms for a set of experiments manipulating mesograzer species identity, mesograzer density and nutrient concentration. We measured epiphyte biomass-specific productivity via incorporation of radioactive carbon. Herbivore effects on epiphyte photosynthetic capacity were strongly positive for R. membranacea, moderately positive for L. littorea and I. baltica and zero for G. oceanicus under low nutrient supply. Both gastropods increased the nitrogen content of epiphytes, especially the small R. membranacea, and enhanced epiphyte growth. The crustacean species did not increase epiphyte nutrient content, but I. baltica probably enhanced epiphyte productivity by removing the overstory of algal cells, and thus reducing competition for light, nutrients, and space. The positive effect of the 2 gastropod species disappeared under higher nutrient supply, implying the importance of nutrient limitation for this interaction. The positive effect of I. baltica remained at moderate grazer densities despite the higher nutrient concentrations.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Inter Research
    In:  Marine Ecology Progress Series, 505 . pp. 95-105.
    Publication Date: 2019-04-01
    Description: Simultaneous triple stable isotope analysis of carbon, nitrogen and sulphur was employed to study the temporal variation in the food web of a subtidal eelgrass Zostera marina bed in the western Baltic Sea. Samples of 3 potential food sources (eelgrass, epiphytes and seston) and consumer species were collected biweekly from March through September 2011. Temporal variation of stable isotope compositions was observed in primary producers and consumer species. However, variation between replicates, particularly omnivores, often exceeded variation over time. The high degree of omnivory among the generalist feeders in this eelgrass community allows for generalist feeders to flexibly switch food sources, thus enhancing food-web stability. As coastal systems are subject to seasonal changes, as well as alterations related to human disturbance and climate, these food webs may retain a certain resilience due to their plentiful omnivores.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-06-22
    Description: We assessed the seasonal change in trophic interactions at the mesograzer and small predator level in a temperate eelgrass system. This was done through stable isotope (δ13C and δ15N) and fatty acid analyses of eelgrass Zostera marina, attached epiphytes, sand microflora, the red alga Delesseria sanguinea, and the 4 most common mesograzer and predator species. Sampling took place monthly in the western part of the Baltic Sea during a whole year (April 2002 to February 2003). The trophic importance of microalgae was corroborated in all studied species. Red algae were consumed to a lesser extent and eelgrass was of minor importance. The degree of dependence on the main carbon sources was species-specific and varied with time. The small gastropod, Rissoa membranacea, mostly grazed epiphytes (73% on average), whereas the fractions of epiphytes and sand microflora showed a more balanced pattern in the other mesograzer species. Stable carbon data and fatty acid composition strongly suggested that epiphytic algae were the primary source of organic matter for mesograzers in late spring and autumn. In summer, sand microflora were of greater importance as carbon sources, except for the amphipod Gammarus oceanicus for which red algae was the most important. Stable nitrogen values indicated that the degree of carnivory was size-dependent in both omnivorous crustacean species studied; larger individuals generally occupied a higher trophic position than did smaller ones. Furthermore, the isopod Idotea baltica was more herbivorous in summer than in the other seasons. Our results confirm the importance of species-specific and temporal variability for the effect of mesograzers in eelgrass systems. The significance of mesograzers as determinants of food-web structure via the reduction of epiphytes is further corroborated by our study, and the observed high plasticity of mesograzers concerning food sources may promote the stability of eelgrass food webs despite strong seasonal variations in the biomass of primary producers.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-06-25
    Description: Through the use of mesocosm experiments, we show that an unusually early spring phytoplankton bloom can be induced by intermittent high-light periods. We performed mesocosm experiments where plankton assemblages from Kiel Bight (Western Baltic Sea) received a light regime based on the natural seasonal irradiance dimmed to 43% of surface irradiance of cloudless days, starting with irradiance levels of mid-January (6 mesocosms) and mid-February (6 mesocosms). After 6 d, half of the mesocosms received a ca. 2-fold increase in irradiance. In the January mesocosms, a phytoplankton bloom developed only in the treatments with the high-light episode, whereas in the February mesocosms a phytoplankton bloom also developed in the controls. Phytoplankton net growth rates, production:biomass ratios and biomass at the end of the high irradiance episodes were positively correlated to the daily light dose. The relative biomass of diatoms increased with increasing light, whereas the relative biomass of cryptophytes decreased. A bottom-up transmission to mesozooplankton (mainly copepods of the genera Acartia and Oithona) was evident by increased densities of copepod nauplii and egg production under higher light conditions, whereas copepodids and adults showed no responses during the experimental period. The taxonomic composition of the nauplii was shifted to the advantage of Acartia/Centropages (not distinguished at the naupliar stage) under higher light conditions.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-05-31
    Description: The foraging modes of calanoid copepods differ in that stationary suspension-feeding is more easily detected by prey with strong escape responses (ciliates) than is ‘cruising’ or ‘ambushing’ feeding. Thus, the ability of a copepod to include heterotrophic prey in its diet may be associated with its foraging mode and, further, with its nitrogen stable isotope signature (δ15N). This is because a more carnivorous diet may be expected to result in a higher δ15N. We tested this hypothesis in a mesocosm study using a density gradient (0 to 80 ind. l-1) of calanoid copepods. We expected copepod δ15N to generally increase with decreasing copepod density because of increased food availability, and predicted stronger increases for cruising than for stationary suspension-feeding species. As an assemblage, copepods had a pronounced impact on the food web: diatoms and ciliates decreased, whereas nanoflagellates increased with increasing copepod density. As expected, Centropages hamatus, a cruising species, showed the strongest isotopic increase and also highest population growth at low copepod density, suggesting that it was the most efficient species in capturing ciliates. Temora longicornis, a stationary suspension-feeder, showed a uniform isotopic increase in all mesocosms, which we believe resulted from nutritional stress arising from poor feeding on both ciliates (too fast for ingestion by T. longicornis) and nanoflagellates (too small). However, Pseudocalanus elongatus, a species equally categorised as a stationary suspension-feeder, showed increases in its δ15N similar to those for C. hamatus. While this may indicate potential switching in its foraging mode, alternative explanations cannot be ruled out, partly because qualitative and quantitative aspects of trophic enrichment in our experiment could not be clearly separated. This study shows that consumer δ15N are difficult to interpret, even if potential food sources and aspects of the species’ biology are known, and thus emphasises the necessity for further laboratory studies to help better interpret zooplankton δ15N in the field.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-06-19
    Description: We examined the simultaneous effect of climate warming and light availability on the phytoplankton spring bloom using 1400 l (1 m depth) indoor mesocosms. The timing of the spring bloom was advanced both by warming and higher light intensity, but the influence of temperature on the phytoplankton community was stronger than the light effect. Warming affected phytoplankton directly and indirectly via enhanced grazing pressure at higher temperatures. Warming resulted in markedly lower phytoplankton biomass and a shift towards smaller cell sizes. It also led to changes in the community structure of phytoplankton and zooplankton. Among phytoplankton, large-celled diatoms were most negatively affected by warming. Overwintering zooplankton species (Oithona, Pseudocalanus) remained dominant in the cold treatments, while they were replaced by late spring or summer species (Acartia, Centropages, Temora) in the warmed treatments. Our results show that understanding food web interactions might be very important to the study of the effects of climate warming on pelagic ecosystems.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Inter Research
    In:  Marine Ecology Progress Series, 324 . pp. 105-112.
    Publication Date: 2018-05-31
    Description: In a mesocosm experiment in Kiel Fjord, the plankton community 〈250 µm was exposed to a mesozooplankton density gradient (5 to 80 individuals l–1) dominated by the calanoid copepod Acartia clausi. Over the experimental period (9 d), the diazotrophic cyanobacterium Nodularia spumigena increased exponentially, irrespective of mesozooplankton densities, attaining maximum concentrations of 1200 cells ml–1 (3700 filaments l–1). At the end of the experiment, the δ15N of particulate organic matter was negatively correlated with N. spumigena concentrations, indicating the fixation of isotopically ‘light’, diazotrophic nitrogen. In all treatments, final copepod δ15N were lower (–0.7 to –2.7‰) than initial copepod δ15N, indicating the transfer of diazotrophic nitrogen to mesozooplankton. Based on a simple isotopic mixing model, diazotrophic nitrogen was calculated to contribute 45 to 6% to final copepod δ15N along the mesozooplankton gradient. This translates to a transfer of 2 to 24% of net nitrogen fixation to the mesozooplankton standing stock. The absence of any mesozooplankton impact on N. spumigena, and the negative impact found for other microplankton, including diatoms and ciliates, suggest that diazotrophically fixed nitrogen reached mesozooplankton indirectly through trophic vectors. This is consistent with the fact that copepod δ15N decreased with decreasing mesozooplankton densities, since only a quantitatively limited dietary source may be expected to result in density-dependent changes in copepod δ15N. Considering that natural mesozooplankton densities in the Baltic Sea rarely exceed 10 ind. l–1, the contribution of diazotrophically fixed nitrogen to mesozooplankton may be substantial (23 to 45%) during summer blooms of diazotrophic cyanobacteria.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-09-23
    Description: The response of the phytoplankton and bacterial spring succession to the predicted warming of sea surface temperature in temperate climate zones during winter was studied using an indoor-mesocosm approach. The mesocosms were filled with winter water from the Kiel Fjord, Baltic Sea. Two of them were started at ~2°C and the temperature was subsequently increased according to the decadal temperature profile of the fjord (ΔT 0°C, baseline treatment). The other mesocosms were run at 3 elevated temperatures with differences of ΔT +2, +4 and +6°C. All mesocosms were exposed to the same light conditions. Timing of peak phytoplankton primary production (PP) during the experimental spring bloom was not significantly influenced by increasing temperatures, whereas the peak of bacterial secondary production (BSP) was accelerated by about 2 d per °C. This suggests that, in case of warming, the spring peak of bacterial degradation of organic matter (in terms of BSP) would occur earlier in the year. Furthermore, the lag time between the peaks of PP and BSP (about 16 d for ΔT 0°C) would diminish progressively at elevated temperatures. The average ratio between BSP and PP increased significantly from 0.37 in the coldest mesocosms to 0.63 in the warmest ones. Community respiration and the contribution of picoplankton (〈3 µm fraction) to this also increased at elevated temperatures. Our results lead to the prediction that climate warming during the winter/ early spring in temperate climate zones will favor bacterial degradation of organic matter by tightening the coupling between phytoplankton and bacteria. However, if PP is reduced by warming, as in our experiments, this will not necessarily lead to increased recycling of organic matter (and CO2).
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...