GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    San Diego :Elsevier,
    Keywords: Soil moisture. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (441 pages)
    Edition: 1st ed.
    ISBN: 9780128033890
    Language: English
    Note: Front Cover -- Satellite Soil Moisture Retrieval: Techniques and Applications -- Copyright -- Dedication -- Contents -- List of Contributors -- Author Biographies -- Preface -- Acknowledgments -- About the Cover -- Section I: Introduction -- Chapter 1: Soil Moisture from Space: Techniques and Limitations -- 1. Introduction -- 2. Means of Measuring Soil Moisture -- 2.1. Remotely Sensed Soil Moisture, The Main Approaches -- 2.2. Microwave as a Tool for Soil Moisture Monitoring: Current Status -- 3. Satellite Missions -- 4. Soil Moisture Retrieval From Space Using Passive Microwaves -- 4.1. Surface Soil Moisture -- 4.2. Root-Zone Soil Moisture -- 5. Way Forward -- 6. Caveats -- 7. Conclusions and Perspectives -- References -- Chapter 2: Available Data Sets and Satellites for Terrestrial Soil Moisture Estimation -- 1. Introduction -- 2. In Situ Data Sets for Soil Moisture -- 2.1. International Soil Moisture Network -- 2.2. Field Campaigns -- 2.2.1. Soil Moisture Experiments Series -- 2.2.1.1. Soil Moisture Experiment 2002 -- 2.2.1.2. Soil Moisture Experiment 2003 -- 2.2.1.3. Soil Moisture Experiment 2004 -- 2.2.1.4. Soil Moisture Experiment 2005 -- 2.2.2. Canadian Experiment for Soil Moisture in 2010 -- 2.2.3. Soil Moisture Active Passive Validation Experiment -- 2.2.3.1. SMAPVEX08 -- 2.2.3.2. SMAPVEX12 -- 2.2.4. Soil Moisture Active Passive Experiments -- 2.3. FLUXNET sites -- 3. Satellite Data Sets for Soil Moisture -- 3.1. The Scanning Multichannel Microwave Radiometer (SMMR) -- 3.2. Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E/2) -- 3.3. Advanced Scatterometer (ASCAT) -- 3.4. Soil Moisture and Ocean Salinity (SMOS) -- 3.5. Soil Moisture Active and Passive (SMAP) Mission -- 4. Conclusion -- References -- Section II: Optical and Infrared Techniques & -- Synergies Between them. , Chapter 3: Soil Moisture Retrievals Using Optical/TIR Methods -- 1. Introduction -- 2. Optical/TIR Model History and Concept -- 2.1. History -- 2.2. The Ts/VI Concept -- 3. Optical/TIR Models Used for SM Estimation -- 3.1. Direct Estimation of SM From Ts/VI Space -- 3.2. Models Based on Ts/VI and Empirical Equations -- 4. Case Study: Estimation of SM Using Optical/TIR RS in the Canadian Prairies -- 4.1. Introduction -- 4.2. Materials and Methods -- 4.2.1. Study Area and Data -- 4.2.2. Methodology -- 4.3. Results -- 4.3.1. Comparing EF Estimations Retrieved From Three Different Approaches -- 4.3.2. SM Estimation From Evaporative Fraction -- 4.3.3. Correlations Between Estimated SM and Field Data -- 5. Summary and Future Outlook -- References -- Chapter 4: Optical/Thermal-Based Techniques for Subsurface Soil Moisture Estimation -- 1. Introduction -- 2. Methodology -- 2.1. Study Area -- 2.2. Satellite Data, Estimation of TVDI, and Measurements -- 3. Results and Discussion -- 3.1. TVDI Parameters -- 3.2. Comparison of TVDI and Subsurface Soil Moisture Measurements -- 4. Conclusions -- References -- Chapter 5: Spatiotemporal Estimates of Surface Soil Moisture from Space Using the Ts/VI Feature Space -- 1. Introduction -- 2. The Ts/VI Domain -- 3. Experimental Set Up and Data Sets -- 3.1. CarboEurope In Situ Measurements -- 3.2. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Imagery -- 3.3. The Advanced Along Track Scanning Radiometer (AATSR) Imagery -- 3.4. The SimSphere Land Biosphere Model -- 4. Methodology -- 4.1. Preprocessing -- 4.2. ``Triangle´´ Implementation -- 4.3. Coupling EO With the SVAT Model to Retrieve SMC -- 5. Results -- 6. Discussion -- 7. Conclusions -- Acknowledgments -- References -- Chapter 6: Spatial Downscaling of Passive Microwave Data With Visible-to-Infrared Information for High-Resolution Soil Mo. , 1. Introduction -- 2. A Semiempirical Model to Capture the Synergy of Passive Microwaves With Optical Data at Different Spatial Scales -- 3. High-Resolution Soil Moisture Mapping From Space -- 3.1. Long-Term Validation Over the Central Part of the Duero Basin -- 3.2. Exploring the Use of SWIR-Based Vegetation Indices to Disaggregate SMOS Observations to 500m -- 4. Airborne Field Experiments -- 4.1. Airborne Platform for Simultaneous Thermal, VNIR Hyperspectral and Microwave L-Band Acquisions: Proof-of-Concept and... -- 4.2. Airborne GNSS-R and Landsat 8 for Soil Moisture Estimation -- 5. Future Lines and Recommendations -- Acknowledgments -- References -- Section III: Microwave Soil Moisture Retrieval Techniques -- Chapter 7: Soil Moisture Retrieved From a Combined Optical and Passive Microwave Approach: Theory and Applications -- 1. Introduction -- 2. Radiative Transfer Equation -- 2.1. Tau-Omega Model -- 2.2. Effective Temperature, Single Dispersion and Vegetation Optical Depth -- 2.3. A Combined Optical-Passive Microwave Approach -- 2.4. Case Study-Optical Passive Microwave at in-situ level -- 2.5. Case Study-Optical Passive Microwave at Regional Scale -- 2.5.1. Study Area -- 2.5.2. Data -- 2.5.3. Results -- 2.5.4. Discussion -- 2.6. Toward a Thermal Infrared Contribution in the Optical-Passive Microwave Approach -- 3. Conclusions -- Acknowledgments -- References -- Chapter 8: Nonparametric Model for the Retrieval of Soil Moisture by Microwave Remote Sensing -- 1. Introduction -- 2. Material and Methods -- 2.1. Instrumentation Setup and Observations -- 2.2. Radial Basis Function Artificial Neural Network -- 2.3. Performance Indices -- 3. Results and Discussion -- 3.1. Assessment of Data Sets -- 3.2. Estimation of Soil Moisture Using the RBFANN -- 4. Conclusions -- References. , Chapter 9: Temperature-Dependent Spectroscopic Dielectric Model at 0.05-16 GHz for a Thawed and Frozen Alaskan Organic Soil -- 1. Introduction -- 2. Soil Samples and Measurement Procedures -- 3. Concept of a Multirelaxation Spectroscopic Dielectric Model -- 4. Retrieving the Parameters of the Multirelaxation Spectroscopic Dielectric Model -- 5. The Temperature-Dependent Multirelaxation Spectroscopic Dielectric Model -- 6. Evaluation of the TD MRSDM -- 7. Conclusions -- References -- Chapter 10: Active and Passive Microwave Remote Sensing Synergy for Soil Moisture Estimation -- 1. Introduction -- 1.1. Measurement Spatial Resolution -- 1.2. Soil Moisture Sensitivity and Estimation Accuracy -- 2. SR CAP Soil Moisture Retrieval -- 3. MR CAP Soil Moisture Retrieval -- 3.1. Multi-Temporal and Multi-Scale Method -- 3.2. Probabilistic and Machine Learning Techniques -- 4. Forward Electromagnetic Scattering and Emission Model Considerations -- 5. Further Discussions -- References -- Chapter 11: Intercomparison of Soil Moisture Retrievals From In Situ, ASAR, and ECV SM Data Sets Over Different European ... -- 1. Introduction -- 2. Materials and Methods -- 2.1. In Situ Soil Moisture Observations -- 2.2. ECV Soil Moisture Observations -- 2.3. ASAR Soil Moisture Observations -- 2.4. Characterization of Errors -- 3. Results and Discussion -- 3.1. Time Series Temporal Analysis -- 3.2. Seasonal Analysis -- 4. Conclusions -- Acknowledgments -- References -- Section IV: Advanced Applications of Soil Moisture -- Chapter 12: Use of Satellite Soil Moisture Products for the Operational Mitigation of Landslides Risk in Central Italy -- 1. Introduction -- 2. PRESSCA Early Warning System -- 3. Case Study and Data Sets -- 3.1. Study Area and Ground Meteorological Observations -- 3.2. Satellite Soil Moisture Observations -- 4. Results and Discussion. , 4.1. Comparison Between Satellite, In Situ, and Modeled Soil Moisture Data -- 4.2. Impact of Soil Moisture Condition on Landslide Hazard -- 5. Conclusions and Future Perspectives -- Acknowledgments -- References -- Chapter 13: Remotely Sensed Soil Moisture as a Key Variable in Wildfires Prevention Services: Towards New Prediction Tool... -- 1. Introduction -- 2. Remotely Sensed Soil Moisture, Climate Change, and Fire Risk -- 2.1. Remote Sensing of the Earth's Soil Moisture -- 2.2. Remotely Sensed Soil Moisture, Climate Change, and Fire Risk -- 3. The Role of Soil Moisture in Forest Fires -- 3.1. Droughts and High Temperatures Lead to Extreme Forest Fires Events -- 3.2. Dead Fuels Moisture Is a Key Variable in Forest Fire Risk Indices -- 4. Linking Remotely Sensed Soil Moisture With Forest Fires Ignition and Propagation -- 5. Fire Risk Assessment in the Iberian Peninsula Using SMOS Data -- 5.1. New Fire Risk Maps Over the Iberian Peninsula Based on SMOS Data -- 5.2. Fire Risk Maps Availability and Operational Applications -- 6. Conclusions -- Acknowledgments -- References -- Chapter 14: Integrative Use of Near-Surface Satellite Soil Moisture and Precipitation for Estimation of Improved Irrigati... -- 1. Introduction -- 2. Material and Methods -- 2.1. Study Area -- 2.2. Ground Validation Data -- 2.3. Satellite Data -- 2.4. Numerical Modeling -- 2.4.1. Initial and Boundary Conditions -- 2.4.2. Soil Parameters -- 2.5. Evaluation Criteria -- 3. Results and Discussion -- 3.1. Comparison of TRMM Rainfall With Ground-Based Rainfall Measurements -- 3.2. Soil Hydraulic Parameters -- 3.3. Soil Moisture Calibration and Validation -- 4. Conclusions -- Acknowledgments -- References -- Chapter 15: A Comparative Study on SMOS and NLDAS-2 Soil Moistures Over a Hydrological Basin-With Continental Climate -- 1. Introduction -- 2. Data and Methodology. , 2.1. Study Area and Data Sets.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Saint Louis :Elsevier,
    Keywords: Earth sciences--Remote sensing. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (448 pages)
    Edition: 1st ed.
    ISBN: 9780128030318
    DDC: 550.285
    Language: English
    Note: Front Cover -- Sensitivity Analysis in Earth Observation Modelling -- Sensitivity Analysis in Earth Observation Modelling -- Copyright -- Dedication -- Contents -- List of Contributors -- Preface -- ABOUT THE COVER -- 1 - INTRODUCTION TO SA IN EARTH OBSERVATION (EO) -- 1 - OVERVIEW OF SENSITIVITY ANALYSIS METHODS IN EARTH OBSERVATION MODELING -- 1. INTRODUCTION -- 1.1 DEFINING THE MODEL OUTPUTS AND INPUTS FOR SENSITIVITY ANALYSIS -- 1.1.1 Defining Factor (or Parametric) Uncertainty -- 2. LOCAL SENSITIVITY ANALYSIS -- 2.1 CORRELATION ANALYSIS -- 2.2 REGRESSION ANALYSIS -- 3. GLOBAL SENSITIVITY ANALYSIS -- 3.1 ONE-AT-A-TIME SENSITIVITY ANALYSIS METHODS -- 3.2 THE MORRIS METHOD FOR FACTOR SCREENING -- 3.3 VARIANCE-BASED SENSITIVITY ANALYSIS -- 3.4 SAMPLING METHODS FOR GLOBAL SENSITIVITY ANALYSIS -- 3.4.1 Random Sampling -- 3.4.2 Stratified Sampling and the Latin Hypercube -- 3.4.3 Sampling for Sensitivity Indices -- 3.5 SURROGATE MODELS FOR GLOBAL SENSITIVITY ANALYSIS -- 3.5.1 Generalized Linear Modeling -- 3.5.2 Neural Networks -- 3.5.3 Direct Sensitivity Analysis of Surrogate Models -- 3.6 POLYNOMIAL CHAOS -- 3.7 GAUSSIAN PROCESS AND BAYES LINEAR EMULATION -- 4. GRAPHICAL METHODS FOR GLOBAL SENSITIVITY ANALYSIS -- 4.1 SCATTER PLOTS -- 4.2 PLOTTING THE RESPONSE SURFACE -- 4.3 PLOTTING THE SENSITIVITY INDICES -- 5. CONCLUSIONS -- REFERENCES -- 2 - MODEL INPUT DATA UNCERTAINTY AND ITS POTENTIAL IMPACT ON SOIL PROPERTIES -- 1. INTRODUCTION -- 2. A WORLD OF MODELS - HOW CAN THEY BE CLASSIFIED? -- 3. CAN WE TRUST MODELS? - MODEL ACCURACY AND THEIR SENSITIVITY TO INPUT DATA UNCERTAINTY -- 4. SELECTING THE MOST APPROPRIATE MODEL -- 5. WHY AND HOW TO ACCOUNT FOR MODELING UNCERTAINTIES CAUSED BY DIFFERENT INPUT DATA SOURCES -- 6. ASSESSING SENSITIVITY OF ENVIRONMENTAL MODELS. , 7. HOW SOIL TEXTURE MEASURED WITH VISIBLE-NEAR-INFRARED SPECTROSCOPY AFFECTS HYDROLOGICAL MODELING: A CASE STUDY -- 7.1 STUDY SITES AND INSTRUMENTS -- 7.2 SOIL SAMPLES -- 7.3 CHEMOMETRICS -- 7.4 IMPACT OF CHEMOMETRIC METHOD ON SOIL PREDICTION -- 7.5 DIFFERENT INSTRUMENTS, DIFFERENT SOIL PREDICTIONS? WHAT WAS FINALLY THE BEST SOIL PREDICTION ACCURACY? -- 7.6 WHAT DOES THIS FINALLY MEAN FOR OUR ENVIRONMENTAL MODELING? -- 8. WHAT DID WE LEARN? -- REFERENCES -- 2 - LOCAL SA METHODS: CASE STUDIES -- 3 - LOCAL SENSITIVITY ANALYSIS OF THE LANDSOIL EROSION MODEL APPLIED TO A VIRTUAL CATCHMENT -- 1. INTRODUCTION -- 2. MATERIALS AND METHODS -- 2.1 MODEL DESCRIPTION -- 2.2 SENSITIVITY ANALYSIS -- 2.2.1 Parameters -- 2.2.2 Virtual Catchment -- 2.2.3 Sensitivity Calculation -- 3. RESULTS AND DISCUSSION -- 3.1 LINEAR HILLSLOPE -- 3.1.1 Aggregated Parameters -- 3.2 COMPLEX HILLSLOPES -- 4. CONCLUDING REMARKS -- Acknowledgments -- REFERENCES -- 4 - SENSITIVITY OF VEGETATION PHENOLOGICAL PARAMETERS: FROM SATELLITE SENSORS TO SPATIAL RESOLUTION AND TEMPORAL CO ... -- 1. INTRODUCTION -- 2. MONITORING VEGETATION PHENOLOGY -- 3. SENSITIVITY ANALYSIS -- 4. SENSITIVITY OF REMOTELY SENSED PHENOLOGICAL PARAMETERS -- 4.1 SATELLITE SENSOR -- 4.2 VEGETATION INDEX -- 4.3 SPATIAL RESOLUTION -- 4.4 COMPOSITE PERIOD, SMOOTHING, AND FILTERING -- 4.4.1 Composite Period -- 4.4.2 Smoothing Techniques -- 5. CASE STUDY -- 5.1 STUDY AREA -- 5.2 DATA AND METHODOLOGY -- 5.3 RESULTS AND DISCUSSION -- 6. CONCLUSION -- REFERENCES -- 5 - RADAR RAINFALL SENSITIVITY ANALYSIS USING MULTIVARIATE DISTRIBUTED ENSEMBLE GENERATOR∗ -- 1. INTRODUCTION -- 2. DATA AND METHODS -- 2.1 STUDY AREA AND DATA SOURCES -- 2.2 THE MULTIVARIATE DISTRIBUTED ENSEMBLE GENERATOR -- 2.3 THE XINANJIANG MODEL -- 3. METHODOLOGY -- 3.1 EXPERIMENTAL DESIGN -- 3.2 VERIFICATION METHOD -- 4. RESULTS AND DISCUSSION. , 4.1 IMPLEMENTATION OF ENSEMBLE FLOW GENERATION -- 4.2 IMPACT OF ERROR DISTRIBUTION ON MODEL OUTPUT -- 4.3 IMPACT OF SPATIOTEMPORAL DEPENDENCE ON MODEL OUTPUT -- 5. CONCLUSIONS -- REFERENCES -- 6 - FIELD-SCALE SENSITIVITY OF VEGETATION DISCRIMINATION TO HYPERSPECTRAL REFLECTANCE AND COUPLED STATISTICS -- 1. INTRODUCTION -- 2. BACKGROUND ON SPECTRAL DISCRIMINATION OF VEGETATION -- 2.1 PARAMETRIC VERSUS NONPARAMETRIC STATISTICAL TESTS -- 2.1.1 Other Discrimination Methods -- 2.2 UNALTERED VERSUS PROCESSED HYPERSPECTRAL REFLECTANCE -- 2.3 CASE STUDIES FOR EFFECTS OF TYPE OF REFLECTANCE AND STATISTICAL TEST ON THE VEGETATION DISCRIMINATION RESULTS -- 3. SENSITIVITY OF SPECTRAL DISCRIMINATION OF VEGETATION TO THE TYPE OF REFLECTANCE AND STATISTICAL TEST -- 3.1 HYPERSPECTRAL DATA AND METHOD DESCRIPTION -- 3.2 SENSITIVITY OF VEGETATION SPECTRAL DISCRIMINATION TO REFLECTANCE TYPE AND STATISTICAL METHOD -- 3.3 SENSITIVITY OF VEGETATION SPECTRAL DISCRIMINATION TO THE NUMBER OF OBSERVATIONS -- 4. FINAL REMARKS -- REFERENCES -- 3 - GLOBAL (OR VARIANCE)-BASED SA METHODS: CASE STUDIES -- 7 - A MULTIMETHOD GLOBAL SENSITIVITY ANALYSIS APPROACH TO SUPPORT THE CALIBRATION AND EVALUATION OF LAND SURFACE MODELS -- 1. INTRODUCTION -- 2. MODEL AND METHODS -- 2.1 REGIONAL SENSITIVITY ANALYSIS -- 2.2 VARIANCE-BASED SENSITIVITY ANALYSIS -- 2.3 THE PAWN DENSITY-BASED METHOD -- 2.4 THE JULES MODEL -- 2.5 THE SANTA RITA CREOSOTE STUDY SITE -- 2.6 EXPERIMENTAL SETUP: DEFINITION OF INPUT FACTORS AND OUTPUTS -- 2.7 DEFINITION OF THE RANGE OF VARIATION OF THE INPUT FACTORS -- 3. RESULTS -- 3.1 RESULTS OF REGIONAL SENSITIVITY ANALYSIS -- 3.2 RESULTS OF VARIANCE-BASED SENSITIVITY ANALYSIS -- 3.3 RESULTS OF PAWN -- 3.4 OVERALL SENSITIVITY ASSESSMENT FROM THE MULTIMETHOD APPROACH -- 4. CONCLUSIONS -- Acknowledgments -- REFERENCES. , 8 - GLOBAL SENSITIVITY ANALYSIS FOR SUPPORTING HISTORY MATCHING OF GEOMECHANICAL RESERVOIR MODELS USING SATELLITE I ... -- 1. INTRODUCTION -- 2. CASE STUDY -- 2.1 SURFACE DEFORMATION AT THE KB-501 WELL OF IN SALAH SITE -- 2.2 THREE-DIMENSIONAL HYDROMECHANICAL MODEL OF KB-501 -- 3. METHODS -- 3.1 VARIANCE-BASED GLOBAL SENSITIVITY ANALYSIS -- 3.2 PRINCIPLES OF METAMODELING -- 3.3 INTRODUCTION TO KRIGING METAMODEL -- 3.4 DESCRIPTION OF THE WORKFLOW -- 4. APPLICATION -- 4.1 REDUCING THE NUMBER OF UNCERTAINTY INPUT PARAMETERS -- 4.2 CALIBRATION OF THE RESERVOIR YOUNG'S MODULUS -- SUMMARY AND FUTURE WORK -- Acknowledgments -- REFERENCES -- 9 - ARTIFICIAL NEURAL NETWORKS FOR SPECTRAL SENSITIVITY ANALYSIS TO OPTIMIZE INVERSION ALGORITHMS FOR SATELLITE-BAS ... -- 1. INTRODUCTION -- 2. DATA AND METHODS -- 2.1 ARTIFICIAL NEURAL NETWORKS: OVERVIEW -- 2.1.1 Artificial Neural Networks for the Inversion of Satellite Measurements of Spectral Radiation for the Observation of the Ear ... -- 2.2 NEURAL NETWORK-BASED TECHNIQUES TO REDUCE THE INPUT VECTOR DIMENSIONALITY -- 2.2.1 Extended Pruning -- 2.2.2 Autoassociative Neural Networks -- 2.3 SAMPLE DATA SET -- 2.3.1 Sulfate Aerosols and Their Extinction Coefficient -- 2.3.2 Thermal Infrared Satellite Pseudo-Observations -- 3. RESULTS -- 3.1 TRAINING AND TESTING THE MAXIMUM DIMENSIONALITY NEURAL NETWORK -- 3.2 SELECTION OF THE INPUT WAVELENGTHS AND SPECTRAL SENSITIVITY ANALYSIS -- 3.3 COMPARING THE PERFORMANCES OF REDUCED DIMENSIONALITY NEURAL NETWORK -- 4. CONCLUSIONS -- Acknowledgments -- REFERENCES -- 10 - GLOBAL SENSITIVITY ANALYSIS FOR UNCERTAIN PARAMETERS, MODELS, AND SCENARIOS -- 1. INTRODUCTION -- 2. MORRIS METHOD -- 3. SOBOL' METHOD -- 3.1 FIRST-ORDER AND TOTAL-EFFECT SENSITIVITY INDICES -- 3.2 MONTE CARLO IMPLEMENTATION AND TWO APPROXIMATION METHODS. , 3.2.1 Sparse-Grid Collocation for Evaluating Mean and Variance -- 3.2.2 Distributed Evaluation of Local Sensitivity Analysis -- 4. SOBOL' METHOD FOR MULTIPLE MODELS AND SCENARIOS -- 4.1 HIERARCHICAL FRAMEWORK FOR UNCERTAINTY QUANTIFICATION -- 4.2 GLOBAL SENSITIVITY INDICES FOR SINGLE MODEL AND SINGLE SCENARIO -- 4.3 GLOBAL SENSITIVITY INDICES FOR MULTIPLE MODELS BUT SINGLE SCENARIO -- 4.4 GLOBAL SENSITIVITY INDICES FOR MULTIPLE MODELS AND MULTIPLE SCENARIOS -- 5. SYNTHETIC STUDY WITH MULTIPLE SCENARIOS AND MODELS -- 5.1 SYNTHETIC CASE OF GROUNDWATER REACTIVE TRANSPORT MODELING -- 5.2 UNCERTAIN SCENARIOS, MODELS, AND PARAMETERS -- 5.3 TOTAL SENSITIVITY INDEX FOR HEAD UNDER INDIVIDUAL MODELS AND SCENARIOS -- 5.4 TOTAL SENSITIVITY INDEX FOR HEAD UNDER MULTIPLE MODELS BUT INDIVIDUAL SCENARIOS -- 5.5 TOTAL SENSITIVITY INDEX FOR HEAD UNDER MULTIPLE MODELS AND MULTIPLE SCENARIOS -- 5.6 TOTAL SENSITIVITY INDEX FOR ETHENE CONCENTRATION -- 6. USING GLOBAL SENSITIVITY ANALYSIS FOR SATELLITE DATA AND MODELS -- 7. CONCLUSIONS AND PERSPECTIVES -- Acknowledgments -- REFERENCES -- 4 - OTHER SA METHODS: CASE STUDIES -- 11 - SENSITIVITY AND UNCERTAINTY ANALYSES FOR STOCHASTIC FLOOD HAZARD SIMULATION -- 1. INTRODUCTION -- 2. BASIC PRINCIPLES OF STOCHASTIC APPROACH TO FLOOD HAZARD -- 2.1 STOCHASTIC SIMULATION OF RESERVOIR INFLOWS -- 2.1.1 Storm Seasonality -- 2.1.2 Precipitation Magnitude-Frequency Relationship -- 2.1.3 Temporal and Spatial Distribution of Storms -- 2.1.4 Air Temperature and Freezing Level Temporal Patterns -- 2.1.5 The 1000-mb Air Temperature Simulation -- 2.1.6 Air Temperature Lapse Rates -- 2.1.7 Freezing Level -- 2.1.8 Watershed Model Antecedent Conditions Sampling -- 2.1.9 Initial Reservoir Level -- 2.2 SIMULATION OF RESERVOIR OPERATION-FLOOD ROUTING -- 2.3 SIMULATION PROCEDURE. , 3. UNCERTAINTY ASSOCIATED WITH STOCHASTICALLY DERIVED FLOOD QUANTILES.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Milton :Taylor & Francis Group,
    Keywords: Water-supply--Remote sensing. ; Electronic books.
    Description / Table of Contents: This book advances the scientific understanding, development, and application of geospatial technologies related to water resource management. It presents recent developments and applications specifically by utilizing new earth observation datasets such as TRMM/GPM, AMSR E/2, SMOS, SMAP and GCOM in combination with GIS, artificial intelligence, and hybrid techniques. By linking geospatial techniques with new satellite missions for earth and environmental science, the book promotes the synergistic and multidisciplinary activities of scientists and users working in the field of hydrological sciences.
    Type of Medium: Online Resource
    Pages: 1 online resource (326 pages)
    Edition: 1st ed.
    ISBN: 9781498719698
    DDC: 333.91
    Language: English
    Note: Cover -- Half Title -- Title Page -- Copyright Page -- Preface -- Table of Contents -- List of Contributors -- Section I: General -- 1: Introduction to Geospatial Technology for Water Resources -- Section II: Geographical Information System Based Approaches -- 2: GIS Supported Water Use Master Plan: A Planning Tool for Integrated Water Resources Management in Nepal -- 3: Spatial Integration of Rice-based Cropping Systems for Soil and Water Quality Assessment Using Geospatial Tools and Techniques -- 4: A Geographic Information System (GIS) Based Assessment of Hydropower Potential within the Upper Indus Basin Pakistan -- 5: Flood Risk Assessment for Kota Tinggi, Johor, Malaysia -- 6: Delineation and Zonation of Flood Prone Area Using Geo-hydrological Parameters: A Case Study of Lower Ghaghara River Valley -- 7: Geospatial Technology for Water Resource Development in WGKKC2 Watershed -- Section III: Satellite Based Approaches -- 8: Predicting Flood-vulnerability of Areas Using Satellite Remote-sensing Images in Kumamoto City, Japan -- 9: Validation of Hourly GSMaP and Ground Base Estimates of Precipitation for Flood Monitoring in Kumamoto, Japan -- 10: Appraisal of Surface and Groundwater of the Subarnarekha River Basin, Jharkhand, India: Using Remote Sensing, Irrigation Indices and Statistical Technique -- 11: Spatial and Temporal Variability of Sea Surface Height Anomaly and its Relationship with Satellite Derived Chlorophyll a Pigment Concentration in the Bay of Bengal -- 12: Monitoring Soil Moisture Deficit Using SMOS Satellite Soil Moisture: Correspondence through Rainfall-runoff Model -- Section IV: Artificial Intelligence and Hybrid Approaches -- 13: A Deterministic Model to Predict Frost Hazard in Agricultural Land Utilizing Remotely Sensed Imagery and GIS. , 14: A Statistical Approach for Catchment Calibration Data Selection in Flood Regionalisation -- 15: Prediction of Caspian Sea Level Fluctuations Using Artificial Intelligence -- 16: Spatio-temporal Uncertainty Model for Radar Rainfall -- 17: Soil Moisture Retrieval from Bistatic Scatterometer Measurements using Fuzzy Logic System -- Section V: Challenges in Geospatial Technology For Water Resources Development -- 18: Challenges in Geospatial Technology for Water Resources Development -- Index -- About the Editors.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...