GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2015-2019  (122)
Document type
Keywords
Language
Years
Year
  • 1
    Keywords: Hochschulschrift
    Type of Medium: Book
    Pages: 67 Seiten , Illustrationen
    Language: German , English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: Hochschulschrift
    Type of Medium: Book
    Pages: 55, 16 Seiten , Illustrationen
    Language: German , English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Keywords: Hochschulschrift
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource ( 72Seiten = 8MB) , Illustrationen
    Language: German , English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Keywords: Forschungsbericht ; Western Australia ; Kontinentalrand ; Meeressediment ; Bohrkern ; Klimazeuge
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (33 Seiten, 28,01 MB) , Illustrationen, Diagramme
    Language: German
    Note: Förderkennzeichen BMBF 03G0257A , Unterschiede zwischen dem gedruckten Dokument und der elektronischen Ressource können nicht ausgeschlossen werden
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-02-06
    Description: We investigated the onset and development of Cretaceous Oceanic Anoxic Event 2 (OAE2) in a newly drilled core (SN degrees 4) from the Tarfaya Basin (southern Morocco), where this interval is unusually expanded. High-resolution (centimeter-scale equivalent to centennial) analysis of bulk organic and carbonate stable isotopes and of carbonate and organic carbon content in combination with XRF scanner derived elemental distribution reveal that the ocean-climate system behaved in a highly dynamic manner prior to and during the onset of OAE2. Correlation with the latest orbital solution indicates that the main carbon isotope shift occurred during an extended minimum in orbital eccentricity (similar to 400 kyr cycle). Shorter-term fluctuations in carbonate and organic carbon accumulation and in sea level related terrigenous discharge were predominantly driven by variations in orbital obliquity. Negative excursions in organic and carbonate delta C-13 preceded the global positive delta C-13 shift marking the onset of OAE2, suggesting injection of isotopically depleted carbon into the atmosphere. The main delta C-13 increase during the early phase of OAE2 in the late Cenomanian was punctuated by a transient plateau. Maximum organic carbon accumulation occurred during the later part of the main delta C-13 increase and was associated with climate cooling events, expressed as three consecutive maxima in bulk carbonate delta O-18. The extinctions of the thermocline dwelling keeled planktonic foraminifers Rotalipora greenhornensis and Rotalipora cushmani occurred during the first and last of these cooling events and were likely associated with obliquity paced, ocean-wide expansions, and intensifications of the oxygen minimum zone, affecting their habitat space on a global scale.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-02-06
    Description: An important tool for deep-sea temperature reconstruction is Mg/Ca paleothermometry applied to benthic foraminifera. Foraminifera of the genus Melonis appear to be promising candidates for temperature reconstructions due to their wide geographical and bathymetric distribution, and their infaunal habitat, which was suggested to reduce secondary effects from carbonate ion saturation (Δ[CO3 2−]). Here, we make substantial advances to previous calibration efforts and present new multi-lab Mg/Ca data for Melonis barleeanum and Melonis pompilioides from more than one hundred core top samples spanning in situ bottom temperatures from −1 to 16 °C, coupled with morphometric analyses of the foraminifer tests. Both species and their morphotypes seem to have a similar response of Mg/Ca to growth temperature. Compilation of new and previously published data reveals a linear dependence of temperature on Mg/Ca, with a best fit of Mg/Ca (mmol/mol) = 0.113 ± 0.005 ∗ BWT (°C) + 0.792 ± 0.036 (r2 = 0.81; n = 120; 1σ SD). Salinity, bottom water Δ[CO3 2−], and varying morphotypes have no apparent effect on the Mg/Ca-temperature relationship, but pore water Δ[CO3 2−] might have had an influence on some of the samples from the tropical Atlantic.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-02-08
    Description: Highlights • Complete upper Albian to early Turonian climate archive in drilled core from Tarfaya Basin. • Eccentricity pacing of mid Cretaceous OAE isotope excursions. • MCE and OAE2 associated with climate cooling and sea level fall. Abstract A 325 m long continuous succession of uppermost Albian to lower Turonian pelagic (outer shelf) deposits was recovered from a new drill site in the central part of the Tarfaya Basin (southern Morocco). Natural gamma ray wireline logging, carbonate and organic carbon content, bulk carbonate and organic carbon stable isotopes and X-ray fluorescence (XRF)-scanner derived elemental distribution data in combination with planktonic foraminiferal biostratigraphy indicate complete recovery of the Cenomanian Stage. This exceptional sediment archive allows to identify orbitally driven cyclic sedimentation patterns and to evaluate the pacing of climatic events and regional environmental change across the Albian-Cenomanian boundary (ACB), the mid-Cenomanian Event (MCE) and Oceanic Anoxic Event 2 (OAE2) in the latest Cenomanian. The deposition of organic-rich sediments in the Tarfaya Basin, likely driven by upwelling of nutrient-rich water masses, started during the latest Albian and intensified in two major steps following the MCE and the onset of OAE2. The duration and structure of the MCE and OAE2 carbon isotope excursions exhibit striking similarities, suggesting common driving mechanisms and climate-carbon cycle feedbacks. Both events were also associated with eustatic sea level falls, expressed as prominent sequence boundaries in the Tarfaya Basin. Based on the 405 kyr signal imprinted on the Natural Gamma Ray (NGR) and XRF-scanner derived Log(Zr/Rb) records, we estimate the duration of the Cenomanian Stage to be 4.8 ± 0.2 Myr.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-09-23
    Description: Present day oceans are well ventilated, with the exception of mid-depth oxygen minimum zones (OMZs) under high surface water productivity, regions of sluggish circulation, and restricted marginal basins. In the Mesozoic, however, entire oceanic basins transiently became dysoxic or anoxic. The Cretaceous ocean anoxic events (OAEs) were characterised by laminated organic-carbon rich shales and low-oxygen indicating trace fossils preserved in the sedimentary record. Yet assessments of the intensity and extent of Cretaceous near-bottom water oxygenation have been hampered by deep or long-term diagenesis and the evolution of marine biota serving as oxygen indicators in today's ocean. Sedimentary features similar to those found in Cretaceous strata were observed in deposits underlying Recent OMZs, where bottom-water oxygen levels, the flux of organic matter, and benthic life have been studied thoroughly. Their implications for constraining past bottom-water oxygenation are addressed in this review. We compared OMZ sediments from the Peruvian upwelling with deposits of the late Cenomanian OAE 2 from the north-west African shelf. Holocene laminated sediments are encountered at bottom-water oxygen levels of 〈 7 μmol kg−1 under the Peruvian upwelling and 〈 5 μmol kg−1 in California Borderland basins and the Pakistan Margin. Seasonal to decadal changes of sediment input are necessary to create laminae of different composition. However, bottom currents may shape similar textures that are difficult to discern from primary seasonal laminae. The millimetre-sized trace fossil Chondrites was commonly found in Cretaceous strata and Recent oxygen-depleted environments where its diameter increased with oxygen levels from 5 to 45 μmol kg−1. Chondrites has not been reported in Peruvian sediments but centimetre-sized crab burrows appeared around 10 μmol kg−1, which may indicate a minimum oxygen value for bioturbated Cretaceous strata. Organic carbon accumulation rates ranged from 0.7 and 2.8 g C cm−2 kyr−1 in laminated OAE 2 sections in Tarfaya Basin, Morocco, matching late Holocene accumulation rates of laminated Peruvian sediments under Recent oxygen levels below 5 μmol kg−1. Sediments deposited at 〉 10 μmol kg−1 showed an inverse exponential relationship of bottom-water oxygen levels and organic carbon accumulation depicting enhanced bioirrigation and decomposition of organic matter with increased oxygen supply. In the absence of seasonal laminations and under conditions of low burial diagenesis, this relationship may facilitate quantitative estimates of palaeo-oxygenation. Similarities and differences between Cretaceous OAEs and late Quaternary OMZs have to be further explored to improve our understanding of sedimentary systems under hypoxic conditions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-09-23
    Description: Highlights: • First ITF reconstruction combining detrital and authigenic isotope signatures. • At the core site signatures of surface water cannot be separated from bottom water. • Intermediate to deep waters remain unchanged in western Timor Sea during MIS3. • Clay-size fraction of the sediment indicates a persistently strong ITF during MIS3. Abstract: The Indonesian Throughflow (ITF) connects the western Pacific Ocean with the eastern Indian Ocean, thus forming one of the major near surface current systems of the global thermohaline circulation. The intensity of the ITF has been found to be sensitive to changes in global ocean circulation, fluctuations in sea level, as well as to the prevailing monsoonal conditions of the Indonesian Archipelago and NW Australia. This study presents the first reconstruction of ITF dynamics combining radiogenic isotope compositions of neodymium (Nd), strontium (Sr), and lead (Pb) of the clay-size detrital fraction to investigate changes in sediment provenance, and paleo seawater Nd signatures extracted from the planktonic foraminifera and authigenic Fe–Mn oxyhydroxide coatings of the marine sediments focussing on marine isotope stage 3 (MIS3). Sediment core MD01-2378 was recovered within the framework of the International Marine Global Change Study (IMAGES) and is located in the area of the ITF outflow in the western Timor Sea (Scott Plateau, 13° 04.95′ S and 121° 47.27′ E, 1783 m water depth). In order to produce reliable seawater signatures, several extraction methods were tested against each other. The results of the study show that at this core location the extraction of surface water Nd isotope compositions from planktonic foraminifera is complicated by incomplete removal of contributions from Fe–Mn oxyhydroxides carrying ambient bottom water signatures. The bottom water Nd isotope signatures reliably obtained from the sediment coatings (average εNd = −5.0) document an essentially invariable water mass composition similar to today throughout the entire MIS3. The radiogenic Nd, Sr, and Pb isotope records of the clay-sized detrital fraction suggest that the Indonesian Archipelago rather than NW Australia was the main particle source at the location of core MD01-2378, and thus indicating a persistently strong ITF during MIS3. Furthermore, the variations of the detrital radiogenic isotopes are shown to be more sensitive to changes in circulation and document a somewhat enhanced ITF intensity during the early part of MIS3 until 47.4 ka compared with the remaining MIS3.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-08-05
    Description: International Ocean Discovery Program (IODP) Expedition 353 (29 November 2014–29 January 2015) drilled six sites in the Bay of Bengal, recovering 4280 m of sediments during 32.9 days of on-site drilling. Recovery averaged 97%, including coring with the advanced piston corer, half-length advanced piston corer, and extended core barrel systems. The primary objective of Expedition 353 is to reconstruct changes in Indian monsoon circulation since the Miocene at tectonic to centennial timescales. Analysis of the sediment sections recovered will improve our understanding of how monsoonal climates respond to changes in forcing external to the Earth’s climate system (i.e., insolation) and changes in forcing internal to the Earth’s climate system, including changes in continental ice volume, greenhouse gases, sea level, and the ocean-atmosphere exchange of energy and moisture. All of these mechanisms play critical roles in current and future climate change in monsoonal regions. The primary signal targeted is the exceptionally low salinity surface waters that result, in roughly equal measure, from both direct summer monsoon precipitation to the Bay of Bengal and runoff from the numerous large river basins that drain into the Bay of Bengal. Changes in rainfall and surface ocean salinity are captured and preserved in a number of chemical, physical, isotopic, and biological components of sediments deposited in the Bay of Bengal. Expedition 353 sites are strategically located in key regions where these signals are the strongest and best preserved. Salinity changes at IODP Sites U1445 and U1446 (northeast Indian margin) result from direct precipitation as well as runoff from the Ganges-Brahmaputra river complex and the many river basins of peninsular India. Salinity changes at IODP Sites U1447 and U1448 (Andaman Sea) result from direct precipitation and runoff from the Irrawaddy and Salween river basins. IODP Site U1443 (Ninetyeast Ridge) is an open-ocean site with a modern surface water salinity very near the global mean but is documented to have recorded changes in monsoonal circulation over orbital to tectonic timescales. This site serves as an anchor for establishing the extent to which the north to south (19°N to 5°N) salinity gradient changes over time.
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...