GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-01-03
    Description: Dust aerosol is important in the Earth system, but the relative impact of meteorological mechanisms on North African dust emission remains unclear. This study presents the first climatology of dust emission amounts associated with Harmattan surges (HSs), characterized by postfrontal strengthening of near-surface winds. A new automated identification uses their strong isallobaric winds as an indicator for HSs in 32 years of ERA-Interim reanalysis. Their impact on dust aerosol emission is estimated by combining the identified events with derived dust emissions. The estimate highlights that about one third of the total emission mass is associated with HSs. Spring shows the largest associated emissions of 30–50% of the monthly totals consistent with the largest number and duration of HSs. Regional emission contributions of up to 80% in the north coincide with the overall largest emission maxima in spring. The importance of HSs for dust emission implies that aerosol-climate models need to accurately represent synoptic-scale storms. Key Points: - First climatology of North African dust emission mass linked with Harmattan surges (HSs) - One third of total emission linked to HSs annually and spatially averaged - Regionally up to 80% of springtime maximum in emission mass is associated with HSs
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-01-04
    Description: This study explores simulations using the numerical Weather Research and Forecasting (WRF) model, with respect to the representation of the nocturnal low-level jet (LLJ) over the Sahel. Three sets of experiments are designed to investigate the sensitivity with respect to (i) the boundary-layer and surface-layer schemes including local and non-local closures, (ii) the horizontal grid spacing and the number of vertical levels within the lowest kilometre and (iii) the role of initial and boundary data. In total, 27 simulations are performed on one host domain and two nested domains for a representative LLJ case study on 9 November 2006. The ability of the individual simulations to represent the life cycle of the nocturnal LLJ is validated against observations carried out in the framework of the African Monsoon Multidisciplinary Analysis (AMMA) special observation periods: surface wind observations from Agoufou, Bamba and Banizoumbou, atmospheric wind profiles derived from Atmospheric Radiation Measurement Mobile Facility, wind radar measurements at Niamey and profiles from radiosondes launched at Niamey. All runs reproduce the general characteristics of the observed LLJs satisfactorily. In contrast to earlier studies, results are more sensitive to the choice of initial and boundary data (here GFS and ECMWF) than to the boundary-layer and surface schemes used or to model grid resolution. The sensitivity to the model grid resolution is surprisingly minor. Considerable differences between the individual stations suggest that local surface conditions such as roughness length, albedo or soil moisture may play an important role in the observed mismatch between model simulations and observations.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-12-13
    Description: Giant mineral dust particles (〉75 μm in diameter) found far from their source have long puzzled scientists. These wind-blown particles affect the atmosphere’s radiation balance, clouds, and the ocean carbon cycle but are generally ignored in models. Here, we report new observations of individual giant Saharan dust particles of up to 450 μm in diameter sampled in air over the Atlantic Ocean at 2400 and 3500 km from the west African coast. Past research points to fast horizontal transport, turbulence, uplift in convective systems, and electrical levitation of particles as possible explanations for this fascinating phenomenon. We present a critical assessment of these mechanisms and propose several lines of research we deem promising to further advance our understanding and modeling.
    Electronic ISSN: 2375-2548
    Topics: Natural Sciences in General
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-05-31
    Description: Due to the harshness and inaccessibility of desert regions, the uncertainties concerning the processes of dust mobilization at the surface, airborne transport, and sedimentation are still considerable, limiting the ability to perform model simulations. In June 2011 a comprehensive data set of ground-based and airborne in-situ measurements and remote sensing observations was acquired within the Fennec/LADUNEX field campaign in the western Sahara region. Here, we evaluate the ability of the state-of-the-art Lagrangian particle dispersion model FLEXPART, newly fitted with a dust mobilization capability, to simulate dust transport in this region. We investigate a case where a large Mesoscale Convective System (MCS) triggered dust emissions in central Mali, which subsequently moved as a large cold-pool dust front towards northern Mauritania. Specifying dust mobilization for this case is shown to be an important obstacle to simulating dust transport during this event, since neither the MCS nor the associated cold pool causing dust emission are represented in the meteorological analysis. Obtaining a realistic dust transport simulation for this case therefore requires an inversion approach using a manual specification of the dust sources supported by satellite imagery. When compared to in-situ and remote-sensing data from two aircraft, the Lagrangian dust transport simulations represent the overall shape and evolution of the dust plume well. While accumulation and coarse mode dust are well represented in the simulation, giant mode particles are considerably underestimated. Our results re-emphasize that dust emission associated with deep moist convection remains a key issue for reliable dust model simulations in northern Africa.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...