GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2019
    In:  Proceedings of the National Academy of Sciences Vol. 116, No. 4 ( 2019-01-22), p. 1126-1131
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 116, No. 4 ( 2019-01-22), p. 1126-1131
    Abstract: Most of the excess energy stored in the climate system due to anthropogenic greenhouse gas emissions has been taken up by the oceans, leading to thermal expansion and sea-level rise. The oceans thus have an important role in the Earth’s energy imbalance. Observational constraints on future anthropogenic warming critically depend on accurate estimates of past ocean heat content (OHC) change. We present a reconstruction of OHC since 1871, with global coverage of the full ocean depth. Our estimates combine timeseries of observed sea surface temperatures with much longer historical coverage than those in the ocean interior together with a representation (a Green’s function) of time-independent ocean transport processes. For 1955–2017, our estimates are comparable with direct estimates made by infilling the available 3D time-dependent ocean temperature observations. We find that the global ocean absorbed heat during this period at a rate of 0.30 ± 0.06 W/ m 2 in the upper 2,000 m and 0.028 ± 0.026 W/ m 2 below 2,000 m, with large decadal fluctuations. The total OHC change since 1871 is estimated at 436 ± 91 × 10 21 J, with an increase during 1921–1946 (145 ± 62 × 10 21 J) that is as large as during 1990–2015. By comparing with direct estimates, we also infer that, during 1955–2017, up to one-half of the Atlantic Ocean warming and thermosteric sea-level rise at low latitudes to midlatitudes emerged due to heat convergence from changes in ocean transport.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2019
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Copernicus GmbH ; 2017
    In:  Geoscientific Model Development Vol. 10, No. 1 ( 2017-01-09), p. 127-154
    In: Geoscientific Model Development, Copernicus GmbH, Vol. 10, No. 1 ( 2017-01-09), p. 127-154
    Abstract: Abstract. Global biogeochemical ocean models contain a variety of different biogeochemical components and often much simplified representations of complex dynamical interactions, which are described by many ( ≈ 10 to  ≈ 100) parameters. The values of many of these parameters are empirically difficult to constrain, due to the fact that in the models they represent processes for a range of different groups of organisms at the same time, while even for single species parameter values are often difficult to determine in situ. Therefore, these models are subject to a high level of parametric uncertainty. This may be of consequence for their skill with respect to accurately describing the relevant features of the present ocean, as well as their sensitivity to possible environmental changes. We here present a framework for the calibration of global biogeochemical ocean models on short and long timescales. The framework combines an offline approach for transport of biogeochemical tracers with an estimation of distribution algorithm (Covariance Matrix Adaption Evolution Strategy, CMA-ES). We explore the performance and capability of this framework by five different optimizations of six biogeochemical parameters of a global biogeochemical model, simulated over 3000 years. First, a twin experiment explores the feasibility of this approach. Four optimizations against a climatology of observations of annual mean dissolved nutrients and oxygen determine the extent to which different setups of the optimization influence model fit and parameter estimates. Because the misfit function applied focuses on the large-scale distribution of inorganic biogeochemical tracers, parameters that act on large spatial and temporal scales are determined earliest, and with the least spread. Parameters more closely tied to surface biology, which act on shorter timescales, are more difficult to determine. In particular, the search for optimum zooplankton parameters can benefit from a sound knowledge of maximum and minimum parameter values, leading to a more efficient optimization. It is encouraging that, although the misfit function does not contain any direct information about biogeochemical turnover, the optimized models nevertheless provide a better fit to observed global biogeochemical fluxes.
    Type of Medium: Online Resource
    ISSN: 1991-9603
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2017
    detail.hit.zdb_id: 2456725-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Copernicus GmbH ; 2017
    In:  Geoscientific Model Development Vol. 10, No. 6 ( 2017-06-29), p. 2425-2445
    In: Geoscientific Model Development, Copernicus GmbH, Vol. 10, No. 6 ( 2017-06-29), p. 2425-2445
    Abstract: Abstract. Conventional integration of Earth system and ocean models can accrue considerable computational expenses, particularly for marine biogeochemical applications. Offline numerical schemes in which only the biogeochemical tracers are time stepped and transported using a pre-computed circulation field can substantially reduce the burden and are thus an attractive alternative. One such scheme is the transport matrix method (TMM), which represents tracer transport as a sequence of sparse matrix–vector products that can be performed efficiently on distributed-memory computers. While the TMM has been used for a variety of geochemical and biogeochemical studies, to date the resulting solutions have not been comprehensively assessed against their online counterparts. Here, we present a detailed comparison of the two. It is based on simulations of the state-of-the-art biogeochemical sub-model embedded within the widely used coarse-resolution University of Victoria Earth System Climate Model (UVic ESCM). The default, non-linear advection scheme was first replaced with a linear, third-order upwind-biased advection scheme to satisfy the linearity requirement of the TMM. Transport matrices were extracted from an equilibrium run of the physical model and subsequently used to integrate the biogeochemical model offline to equilibrium. The identical biogeochemical model was also run online. Our simulations show that offline integration introduces some bias to biogeochemical quantities through the omission of the polar filtering used in UVic ESCM and in the offline application of time-dependent forcing fields, with high latitudes showing the largest differences with respect to the online model. Differences in other regions and in the seasonality of nutrients and phytoplankton distributions are found to be relatively minor, giving confidence that the TMM is a reliable tool for offline integration of complex biogeochemical models. Moreover, while UVic ESCM is a serial code, the TMM can be run on a parallel machine with no change to the underlying biogeochemical code, thus providing orders of magnitude speed-up over the online model.
    Type of Medium: Online Resource
    ISSN: 1991-9603
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2017
    detail.hit.zdb_id: 2456725-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2017
    In:  Nature Geoscience Vol. 10, No. 3 ( 2017-3), p. 202-206
    In: Nature Geoscience, Springer Science and Business Media LLC, Vol. 10, No. 3 ( 2017-3), p. 202-206
    Type of Medium: Online Resource
    ISSN: 1752-0894 , 1752-0908
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2017
    detail.hit.zdb_id: 2396648-8
    detail.hit.zdb_id: 2405323-5
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Frontiers in Marine Science, Frontiers Media SA, Vol. 3 ( 2016-08-05)
    Type of Medium: Online Resource
    ISSN: 2296-7745
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2016
    detail.hit.zdb_id: 2757748-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2018
    In:  Geophysical Research Letters Vol. 45, No. 11 ( 2018-06-16), p. 5617-5626
    In: Geophysical Research Letters, American Geophysical Union (AGU), Vol. 45, No. 11 ( 2018-06-16), p. 5617-5626
    Abstract: Fossil fuel CO 2 emissions drive changes in future ocean Δ 14 C Air‐sea flux and interior gradients in ocean Δ 14 C reverse sign in high‐emission scenarios Simulations can guide ongoing ocean observation programs
    Type of Medium: Online Resource
    ISSN: 0094-8276 , 1944-8007
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2018
    detail.hit.zdb_id: 2021599-X
    detail.hit.zdb_id: 7403-2
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Elsevier BV ; 2018
    In:  Earth and Planetary Science Letters Vol. 492 ( 2018-06), p. 22-34
    In: Earth and Planetary Science Letters, Elsevier BV, Vol. 492 ( 2018-06), p. 22-34
    Type of Medium: Online Resource
    ISSN: 0012-821X
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2018
    detail.hit.zdb_id: 300203-2
    detail.hit.zdb_id: 1466659-5
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2017
    In:  Geophysical Research Letters Vol. 44, No. 24 ( 2017-12-28)
    In: Geophysical Research Letters, American Geophysical Union (AGU), Vol. 44, No. 24 ( 2017-12-28)
    Abstract: Observations and model simulations of ocean anthropogenic carbon assume different start dates Once referenced to the same period, 1971–1995, models and observations of ocean anthropogenic carbon agree to within 4% A model bias in the mean position of Southern Hemisphere westerlies results in a bias in the pattern of Southern Hemisphere carbon uptake
    Type of Medium: Online Resource
    ISSN: 0094-8276 , 1944-8007
    URL: Issue
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2017
    detail.hit.zdb_id: 2021599-X
    detail.hit.zdb_id: 7403-2
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...