GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Copernicus Publications (EGU)  (3)
  • Royal Society of Chemistry  (1)
  • 2015-2019  (4)
Document type
Years
Year
  • 1
    Publication Date: 2021-04-23
    Description: The distribution of dissolved aluminium (dAl) in the water column of the North Atlantic and Labrador Sea was studied along GEOTRACES section GA01 to unravel the sources and sinks of this element. Surface water dAl concentrations were low (median of 2.5 nM) due to low aerosol deposition and removal by phytoplankton. However, surface water dAl concentrations were enhanced on the Iberian and Greenland shelves (up to 30.9 nM) due to continental inputs (rivers, glacial flour and ice melt). A negative correlation was observed between dAl in surface waters and primary production, phytoplankton community structure and biogenic opal production. The abundance of diatoms exerted a significant (p 〈 0.01) control on the surface particulate Al (pAl) to dAl ratios by decreasing dAl levels and increasing pAl levels. Dissolved Al concentrations generally increased with depth and correlated strongly with silicate (R2 〉 0.76) west of the Iberian Basin, suggesting net release of dAl at depth during remineralization of sinking biogenic opal containing particles. Enrichment of dAl at near-bottom depths was observed due to resuspension of sediments near the sediment-water interface. The highest dAl (up to 38.7 nM) concentrations were observed in Mediterranean Overflow Waters which act as a major source of dAl to mid depth waters of the eastern North Atlantic. This study clearly shows that the vertical and lateral distribution of dAl in the North Atlantic differs when compared to other regions of the North Atlantic and global ocean due to the large spatial differences both in the main source of Al, atmospheric deposition, and the main sink for Al, particle scavenging, between different oceanic regions.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-01-31
    Description: Atmospheric deposition is an important source of micronutrients to the ocean, but atmospheric deposition fluxes remain poorly constrained in most ocean regions due to the limited number of field observations of wet and dry atmospheric inputs. Here we present the distribution of dissolved aluminium (dAl), as a tracer of atmospheric inputs, in surface waters of the Atlantic Ocean along GEOTRACES sections GA01, GA06, GA08, and GA10. We used the surface mixed layer concentrations of dAl to calculate atmospheric deposition fluxes using a simple steady state model. We have optimized the aerosol Al fractional solubility, dAl residence time within the surface mixed layer and depth of the surface mixed layer for each separate cruise to calculate the atmospheric deposition fluxes. We calculated the lowest deposition fluxes of 0.15 ± 0.1 and 0.27 ± 0.13 g m−2 yr−1 for the South and North Atlantic Ocean (〉 40° S and 〉 40° N), respectively, and highest fluxes of 2.67 ± 1.96 and 3.82 ± 2.72 g m−2 yr−1 for the South East Atlantic and tropical Atlantic Ocean, respectively. Overall, our estimations are comparable to atmospheric dust deposition model estimates and reported field-based atmospheric deposition estimates. We note that our estimates diverge from atmospheric dust deposition model flux estimates in regions influenced by riverine Al inputs and in upwelling regions. As dAl is a key trace element in the GEOTRACES Programme, the approach presented in this study allows calculations of atmospheric deposition fluxes at high spatial resolution for remote ocean regions.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-04-06
    Description: The availability of the micronutrient iron (Fe) in surface waters determines primary production, N2 fixation, and microbial community structure in large parts of the world's ocean, and thus it plays an important role in ocean carbon and nitrogen cycles. Eastern boundary upwelling systems and the connected oxygen minimum zones (OMZs) are typically associated with elevated concentrations of redox-sensitive trace metals (e.g., Fe, manganese (Mn), and cobalt (Co)), with shelf sediments typically forming a key source. Over the last 5 decades, an expansion and intensification of OMZs has been observed and this trend is likely to proceed. However, it is unclear how trace-metal (TM) distributions and transport are influenced by decreasing oxygen (O2) concentrations. Here we present dissolved (d; 〈0.2 µm) and leachable particulate (Lp; 〉0.2 µm) TM data collected at seven stations along a 50 km transect in the Mauritanian shelf region. We observed enhanced concentrations of Fe, Co, and Mn corresponding with low O2 concentrations (〈50 µmol kg−1), which were decoupled from major nutrients and nutrient-like and scavenged TMs (cadmium (Cd), lead (Pb), nickel (Ni), and copper (Cu)). Additionally, data from repeated station occupations indicated a direct link between dissolved and leachable particulate Fe, Co, Mn, and O2. An observed dFe (dissolved iron) decrease from 10 to 5 nmol L−1 coincided with an O2 increase from 30 to 50 µmol kg−1 and with a concomitant decrease in turbidity. The changes in Fe (Co and Mn) were likely driven by variations in their release from sediment pore water, facilitated by lower O2 concentrations and longer residence time of the water mass on the shelf. Variations in organic matter remineralization and lithogenic inputs (atmospheric deposition or sediment resuspension; assessed using Al as indicator for lithogenic inputs) only played a minor role in redox-sensitive TM variability. Vertical dFe fluxes from O2-depleted subsurface-to-surface waters (0.08–13.5 µmol m−2 d−1) driven by turbulent mixing and vertical advection were an order of magnitude larger than atmospheric deposition fluxes (0.63–1.43 µmol m−2 d−1; estimated using dAl inventories in the surface mixed layer) in the continental slope and shelf region. Benthic fluxes are therefore the dominant dFe supply to surface waters on the continental margins of the Mauritanian upwelling region. Overall, our results indicated that the projected future decrease in O2 concentrations in OMZs may result in increases in Fe, Mn, and Co concentrations.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-08-09
    Description: Trichodesmium is a globally important marine nitrogen fixing cyanobacteria which forms colonies and utilizes atmospherically derived dust as a source for the limiting micro-nutrient iron. Here we report the identification of metallophores isolated from incubations of natural Trichodesmium colonies collected from the Gulf of Aqaba in the Red Sea. Three of our compounds were identified as the ferrioxamine siderophores B, E, and G. The remaining fifteen metallophores had mass to charge ratios that, to our knowledge, are not common to known siderophores. Putative sum formulas suggest most of these compounds were not structurally related to each other. We also found that the novel metallophores readily formed complexes with aluminium and were less specific for Fe than the ferrioxamines. In our incubations of Trichodesmium colonies, the abundance of ten of the novel metallophores positively correlated with Trichodesmium biomass, but not with bacterial biomass, whilst ferrioxamine siderophores were more strongly associated with bacterial biomass. We identified ferrioxamines and our novel metallophores in filtered surface seawater samples from the Gulf of Aqaba. However, our novel metallophores were only observed in the surface seawater sample collected at the time of highest Trichodesmium abundance, while ferrioxamines were observed even when Trichodesmium was not present. We hypothesize that the novel metallophores were specifically associated with Trichodesmium colonies. Together with the bacterially produced ferrioxamines they likely contribute to a distinctive “ligandosphere” surrounding the Trichodesmium colonies, with potential implications for metal homeostasis within the colony environment.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...