GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    Springer
    In:  EPIC3Handbook on Marine Environment Protection, Cham, Switzerland, Springer, 21 p., pp. 353-373, ISBN: 978-3-319-60156-4
    Publication Date: 2018-02-09
    Description: In this chapter, the effects of temperature change—as a main aspect of climate change—on marine biodiversity are assessed. Starting from a general discussion of species responses to temperature, the chapter presents how species respond to warming. These responses comprise adaptation and phenotypic plasticity as well as range shifts. The observed range shifts show more rapid shifts at the poleward range edge than at the equator-near edge, which probably reflects more rapid immigration than extinction in a warming world. A third avenue of changing biodiversity is change in species interactions, which can be altered by temporal and spatial shifts in interacting species. We then compare the potential changes in biodiversity to actual trends recently addressed in empirical synthesis work on local marine biodiversity, which lead to conceptual issues in quantifying the degree of biodiversity change. Finally we assess how climate change impacts the protection of marine environments.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Inbook , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Springer
    In:  EPIC3Towards an Interdisciplinary Approach in Earth System Science, (Springer Earth System Sciences), Heidelberg [u.a.], Springer, 251 p., pp. 173-182, ISBN: 978-3-319-13864-0
    Publication Date: 2015-02-11
    Description: Understanding the climate of the past is essential for anticipating future climate change. Palaeoclimatic archives are the key to the past, but few marine archives (including tropical corals) combine long recording times (decades to centuries) with high temporal resolution (decadal to intra-annual). In temperate and polar regions carbonate shells can perform the equivalent function as a proxy archive as corals do in the tropics. The bivalve Arctica islandica is a particularly unique bio-archive owing to its wide distribution throughout the North Atlantic and its extreme longevity (up to 500 years). This paper exemplifies how information at intra-annual and decadal scales is derived from A. islandica shells and combined into a detailed picture of past conditions. Oxygen isotope analysis (δ18O) provides information on the intra-annual temperature cycle while frequency analysis of shell growth records identifies decadal variability such as a distinct 5-year signal, which might be linked to the North Atlantic Oscillation.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Inbook , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    COPERNICUS GESELLSCHAFT MBH
    In:  EPIC3Biogeosciences, COPERNICUS GESELLSCHAFT MBH, 14, pp. 1577-1591, ISSN: 1726-4170
    Publication Date: 2017-08-01
    Description: Mollusks record valuable information in their hard parts that reflect ambient environmental conditions. For this reason, shells can serve as excellent archives to reconstruct past climate and environmental variability. However, animal physiology and biomineralization, which are often poorly un- derstood, can make the decoding of environmental signals a challenging task. Many of the routinely used shell-based proxies are sensitive to multiple different environmental and physiological variables. Therefore, the identification and in- terpretation of individual environmental signals (e.g., water temperature) often is particularly difficult. Additional prox- ies not influenced by multiple environmental variables or an- imal physiology would be a great asset in the field of paleo- climatology. The aim of this study is to investigate the poten- tial use of structural properties of Arctica islandica shells as an environmental proxy. A total of 11 specimens were ana- lyzed to study if changes of the microstructural organization of this marine bivalve are related to environmental condi- tions. In order to limit the interference of multiple parame- ters, the samples were cultured under controlled conditions. Three specimens presented here were grown at two different water temperatures (10 and 15◦C) for multiple weeks and exposed only to ambient food conditions. An additional eight specimens were reared under three different dietary regimes. Shell material was analyzed with two techniques; (1) confo- cal Raman microscopy (CRM) was used to quantify changes of the orientation of microstructural units and pigment dis-tribution, and (2) scanning electron microscopy (SEM) was used to detect changes in microstructural organization. Our results indicate that A. islandica microstructure is not sen- sitive to changes in the food source and, likely, shell pig- ment are not altered by diet. However, seawater temperature had a statistically significant effect on the orientation of the biomineral. Although additional work is required, the results presented here suggest that the crystallographic orientation of biomineral units of A. islandica may serve as an alterna- tive and independent proxy for seawater temperature.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...