GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Berlin : Duncker & Humblot
    Keywords: Electronic books
    Type of Medium: Online Resource
    Pages: 1 online resource (103 pages)
    Edition: 1st ed.
    ISBN: 9783428427581
    Series Statement: Schriften des Rheinisch-Westfälischen Instituts für Wirtschaftsforschung
    Language: German
    Note: Description based on publisher supplied metadata and other sources
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-06-07
    Description: Purpose To demonstrate the feasibility of in vivo multifrequency magnetic resonance elastography (MRE) of the prostate using externally placed drivers. Methods Three pressurized-air drivers were used to excite shear waves within the prostate at vibration frequencies of 60, 70, and 80 Hz. Full 3D wave fields were acquired by multislice spin-echo echo-planar imaging in conjunction with tomoelastography wave speed recovery for generating full field-of-view stiffness maps. Twelve healthy volunteers were repeatedly scanned to analyze test–retest reproducibility. Five patients with suspected prostate cancer were investigated to demonstrate the clinical feasibility of the method. Results In healthy volunteers, the shear wave speed of the entire prostate was 2.24 ± 0.20 m/s with a repeatability coefficient of 0.14 m/s and 88% intraclass correlation coefficient. No significant difference between the peripheral zone (2.27 ± 0.20 m/s) and the central gland (2.22 ± 0.23 m/s) was observed. In patients, wave-speed maps displayed stiff regions consistent with the localization of suspicious masses detected by other imaging markers. Conclusions The proposed method provides reproducible quantitative maps of tissue stiffness throughout the pelvic region and can easily be integrated into clinical imaging protocols. Clinical stiffness maps display many details of potential interest for cancer diagnosis. Magn Reson Med, 2017. © 2017 International Society for Magnetic Resonance in Medicine.
    Print ISSN: 0740-3194
    Electronic ISSN: 1522-2594
    Topics: Medicine
    Published by Wiley-Blackwell
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...