GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • PERGAMON-ELSEVIER SCIENCE LTD  (1)
  • 2015-2019  (1)
  • 1980-1984
  • 1
    facet.materialart.
    Unknown
    PERGAMON-ELSEVIER SCIENCE LTD
    In:  EPIC3Deep-Sea Research Part I-Oceanographic Research Papers, PERGAMON-ELSEVIER SCIENCE LTD, 103, pp. 86-100, ISSN: 0967-0637
    Publication Date: 2016-11-03
    Description: Current meters measured temperature and velocity on 12 moorings from 1997 to 2014 in the deep Fram Strait between Svalbard and Greenland at the only deep passage from the Nordic Seas to the Arctic Ocean. The sill depth in Fram Strait is 2545 m. The observed temperatures vary between the colder Greenland Sea Deep Water and the warmer Eurasian Basin Deep Water. Both end members show a linear warming trend of 0.11±0.02°C/decade (GSDW) and 0.05±0.01°C/decade (EBDW) in agreement with the deep water warming observed in the basins to the north and south. At the current warming rates, GSDW and EBDW will reach the same temperature of -0.71°C in 2020. The deep water on the approximately 40 km wide plateau near the sill in Fram Strait is a mixture of the two end members with both contributing similar amounts. This water mass is continuously formed by mixing in Fram Strait and subsequently exported out of Fram Strait. Individual measurements are approximately normally distributed around the average of the two end members. Meridionally, the mixing is confined to the plateau region. Measurements less than 20 km to the north and south have properties much closer to the properties in the respective basins (Eurasian Basin and Greenland Sea) than to the mixed water on the plateau. The temperature distribution around Fram Strait indicates that the mean flow cannot be responsible for the deep water exchange across the sill. Rather, a coherence analysis shows that energetic mesoscale flows with periods of approximately 1-2 weeks advect the deep water masses across Fram Strait. These flows appear to be barotropically forced by upper ocean mesoscale variability. We conclude that these mesoscale flows make Fram Strait a hot spot of deep water mixing in the Arctic Mediterranean. The fate of the mixed water is not clear, but after the 1990s, it does not reflect the properties of Norwegian Sea Deep Water. We propose that it currently mostly fills the deep Greenland Sea.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...