GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2015-2019  (2)
  • 2000-2004  (2)
Document type
Years
Year
  • 1
    ISSN: 1574-6941
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Nodularin (Nod), produced by the brackish/marine cyanobacterium Nodularia spumigena, is a potent hepatotoxin, tumor promoter and is possibly carcinogenic to mammals. It is structurally and toxicologically related to the microcystins, produced by Microcystis aeruginosa in fresh water. A better understanding of the kinetics of Nod production might provide an insight into the physiological and ecological function of cyanobacterial hepatotoxins. The present study presents a simple model simulating the concentration of Nod in N. spumigena KAC66 during phosphorus-limited growth. The main assumption of the model is that the Nod production rate is proportional to the chlorophyll-a (Chla) concentration. The model was tuned to data from phosphorus-limited batch cultures of N. spumigena KAC66 at saturating light and was able to predict 96% or more of the variation in both Chla and Nod concentration. No significant effect of available nitrogen source was found on the Chla-specific Nod production rate although specific growth rates were higher in ammonium and nitrate grown cultures compared to cultures grown with N2 as the sole nitrogen source. Literature data on microcystin production by M. aeruginosa in phosphorus-limited chemostats fitted the model predictions well, except at very low dilution rates (0.1 day−1). The good fit with the proposed model to our own and literature data suggests that the production of hepatotoxic cyanotoxins is not regulated upon growth reduction due to phosphate limitation.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1955
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract Parasitism within the group of dinoflagellates is a widespread phenomenon. Whether the parasitic dinoflagellates exhibit specificity in their infection is not well known, but this possibility has become an important issue in the development of biological control of harmful algal blooms. The 18S rDNA sequences from the parasite Amoebophrya sp. and its dinoflagellate host Dinophysis norvegica were determined and compared with the published sequence of Amoebophrya sp. infecting Gymnodinium sanguineum and other dinoflagellates. The results showed that the sequence from the parasite within D. norvegica was clustered with that of the one from G. sanguineum with 100% bootstrap support in a maximum-likelihood analysis. The observed identity between these two sequences was 93%, which indicates that they are not identical species. The two sequences from Amoebophrya sp. were deeply branched within the group of dinoflagellate sequences and represent the earliest diverging dinoflagellates. The sequence from the parasite Parvilucifera infectans, also infecting D. norvegica, was not closely related to the Amoebophrya sp. sequences. The sequence from D. norvegica appeared as a sister group to a cluster containing Prorocentrum lima and Alexandrium spp. without significant bootstrap support. The data presented herein support the hypothesis that A. ceratii comprises more than one species, and this opens the possibility that infections of harmful algal species might involve more than one Amoebophrya species.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-17
    Description: Arranging organisms into functional groups aids ecological research by grouping organisms (irrespective of phylogenetic origin) that interact with environmental factors in similar ways. Planktonic protists traditionally have been split between photoautotrophic “phytoplankton” and phagotrophic “microzoo-plankton”. However, there is a growing recognition of the importance of mixotrophy in euphotic aquatic systems, where many protists often combine photoautotrophic and phagotrophic modes of nutrition. Such organisms do not align with the traditional dichotomy of phytoplankton and microzooplankton. To reflect this understanding,we propose a new functional grouping of planktonic protists in an eco- physiological context: (i) phagoheterotrophs lacking phototrophic capacity, (ii) photoautotrophs lacking phagotrophic capacity,(iii) constitutive mixotrophs (CMs) as phagotrophs with an inherent capacity for phototrophy, and (iv) non-constitutive mixotrophs (NCMs) that acquire their phototrophic capacity by ingesting specific (SNCM) or general non-specific (GNCM) prey. For the first time, we incorporate these functional groups within a foodweb structure and show, using model outputs, that there is scope for significant changes in trophic dynamics depending on the protist functional type description. Accord- ingly, to better reflect the role of mixotrophy, we recommend that as important tools for explanatory and predictive research, aquatic food-web and biogeochemical models need to redefine the protist groups within their frameworks.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-26
    Description: © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Protist 167 (2016): 106–120, doi:10.1016/j.protis.2016.01.003.
    Description: Arranging organisms into functional groups aids ecological research by grouping organisms (irrespective of phylogenetic origin) that interact with environmental factors in similar ways. Planktonic protists traditionally have been split between photoautotrophic “phytoplankton” and phagotrophic “microzooplankton”. However, there is a growing recognition of the importance of mixotrophy in euphotic aquatic systems, where many protists often combine photoautotrophic and phagotrophic modes of nutrition. Such organisms do not align with the traditional dichotomy of phytoplankton and microzooplankton. To reflect this understanding, we propose a new functional grouping of planktonic protists in an eco-physiological context: (i) phagoheterotrophs lacking phototrophic capacity, (ii) photoautotrophs lacking phagotrophic capacity, (iii) constitutive mixotrophs (CMs) as phagotrophs with an inherent capacity for phototrophy, and (iv) non-constitutive mixotrophs (NCMs) that acquire their phototrophic capacity by ingesting specific (SNCM) or general non-specific (GNCM) prey. For the first time, we incorporate these functional groups within a foodweb structure and show, using model outputs, that there is scope for significant changes in trophic dynamics depending on the protist functional type description. Accordingly, to better reflect the role of mixotrophy, we recommend that as important tools for explanatory and predictive research, aquatic food-web and biogeochemical models need to redefine the protist groups within their frameworks.
    Description: This work was funded by grants to KJF and AM from the Leverhulme Trust (International Network Grant F00391 V) and NERC (UK) through its iMARNET programme NE/K001345/1.
    Keywords: Plankton functional types (PFTs) ; Phagotroph ; Phototroph ; Mixotroph ; Phytoplankton ; Microzooplankton
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...