GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-09-23
    Description: Highlights: • Elemental C:N:P variations of organic matter are simulated at monitoring site BY15. • No N2 fixation needed to explain observed PO4PO4 and pCO2pCO2 levels after spring bloom. • Model features relevance of DOP production and remineralization for N2 fixation. • Model estimates of annual N2 fixation are View the MathML source297±24mmolNm-2a-1. • Model estimates of annual total production are View the MathML source14.16±0.71molCm-2a-1. Abstract: For most marine ecosystems the growth of diazotrophic cyanobacteria and the associated amount of nitrogen fixation are regulated by the availability of phosphorus. The intensity of summer blooms of nitrogen (N2) fixing algae in the Baltic Sea is assumed to be determinable from a surplus of dissolved inorganic phosphorus (DIP) that remains after the spring bloom has ended. But this surplus DIP concentration is observed to continuously decrease at times when no appreciable nitrogen fixation is measured. This peculiarity is currently discussed and has afforded different model interpretations for the Baltic Sea. In our study we propose a dynamical model solution that explains these observations with variations of the elemental carbon-to-nitrogen-to-phosphorus (C:N:P) ratio during distinct periods of organic matter production and remineralization. The biogeochemical model resolves seasonal C, N and P fluxes with depth at the Baltic Sea monitoring site BY15, based on three assumptions: (1) DIP is utilized by algae though not needed for immediate growth, (2) the uptake of dissolved inorganic nitrogen (DIN) is hampered when the algae׳s phosphorus (P) quota is low, and (3) carbon assimilation continues at times of nutrient depletion. Model results describe observed temporal variations of DIN, DIP and chlorophyll-a concentrations along with partial pressure of carbon dioxide (pCO2)(pCO2). In contrast to other model studies, our solution does not require N2 fixation to occur shortly after the spring bloom to explain DIP drawdown and pCO2pCO2 levels. Model estimates of annual N2 fixation are View the MathML source297±24mmolNm-2a-1. Estimates of total production are View the MathML source14200±700mmolCm-2a-1, View the MathML source1400±70mmolNm-2a-1, and View the MathML source114±5mmolPm-2a-1 for the upper 50 m. The models C, N and P fluxes disclose preferential remineralization of P and of organic N that was introduced via N2 fixation. Our results are in support of the idea that P uptake by phytoplankton during the spring bloom contributes to the consecutive availability of labile dissolved organic phosphorus (LDOP). The LDOP is retained within upper layers and its remineralization affects algal growth in summer, during periods of noticeable N2 fixation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-09-23
    Description: Highlights: • Coagulation efficiency of the coccolithophorid Emiliania huxleyi was determined with Couette flow devices. • Higher coagulation efficiencies of cells were observed at lower growth rates. • Coagulation efficiency increases with the extracellular polysaccharides fraction. Abstract: Coagulation of small particles results in the formation of larger aggregates that play an important role in the biological pump, moving carbon and other elements from the surface to the deep ocean and seafloor. In this study, we estimated the efficiency of particle coagulation of the coccolithophore Emiliania huxleyi at different growth rates using Couette flow devices at a natural shear rate. To determine the impacts of chemical and biological factors involved in aggregate formation, we investigated how variance in organic matter composition, and in particular the presence of extracellular polysaccharides (EP), including transparent exopolymer particles (TEP) and acidic polysaccharides attached to the coccolith surface, affect the coagulation efficiency (α). When E. huxleyi was grown in a chemostat at different growth rates, coagulation efficiency increased from ~ 0.40 to 1 as cell growth rates declined and nutrients became more limited. With declining growth rate the concentration of EP and the number of detached coccoliths increased. Overall a close correlation between coagulation efficiency of E. huxleyi and the ratio of EP to total particle volume was observed. The minimum value of α of ~ 0.4 determined during this study is higher than estimates published for other phytoplankton cells, and may be related to the presence of EP attached to coccoliths. Based on our findings, we suggest that E. huxleyi is more prone to form aggregates, particularly during the decline of blooms, when increased production of EP and enhanced shedding of coccoliths coincide. This may be one explanation for why blooms of E. huxleyi play an important role in the biological carbon pump, efficiently enhancing the vertical flux of particles, as has been suggested by sediment trap studies.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Elsevier
    In:  Deep Sea Research Part I: Oceanographic Research Papers, 51 (1). pp. 83-92.
    Publication Date: 2016-11-01
    Description: The abundance of transparent exopolymer particles (TEP) was determined in the northeast Atlantic Ocean (40–55°N, ∼20°W) during several cruises from June to November 1996. An accumulation of TEP in the water column was observed at bloom and post-bloom sites along a 20°W transect in June/July (maximum concentration: 124 μg Gum Xanthan equivalents (Xeq.) l−1), but concentrations were uniformly low (mean concentration: 28.5±10.2 μg Xeq. l−1) during autumn at the BIOTRANS site (47°N, 20°W). TEP concentrations in the open northeast Atlantic were considerably lower than previously published values from coastal sites. However, during June/July TEP:Chl a (weight/weight) ratios were comparable to values at coastal seas. It is suggested that phytoplankton production modulates TEP concentration in the open ocean as it does in coastal systems. TEP contributed significantly to the organic carbon pool as derived from the ratio TEP-C:POC, in summer (mean percentage: 17±7.5; w/w), as well as in autumn (mean percentage: 18±11, w/w). The potential influence of TEP on particle coagulation rates in the northeast Atlantic was assessed from estimates of their influence on particle stickiness and on particle volume concentrations. This indicated that TEP may be essential for initiating particle aggregation at low biomass concentrations, typical for open ocean sites.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-12-19
    Description: Highlights: • TEPs and CSPs showed different production patterns and particle-association behaviors. • TEPs and CSPs had different vertical distributions in the Sargasso Sea. • CSP as well as TEP gels are linked by cation bridging. • FlowCAM can be used for in-situ visualization and imaging of TEPs and CSPs in parallel-stained samples. • In-situ visualization of TEPs and CSPs led to new insights about particle interaction and their role in aggregation. Abstract: The discovery of ubiquitous, abundant and transparent gel-like particles, such as the polysaccharide-containing transparent exopolymer particles (TEP) and protein-containing Coomassie stainable particles (CSP) has changed our conception of particle–organism interaction and created new questions about the origin, composition, and role of these particles in aquatic systems. Using both standard and novel staining methods, we studied these gel-like particles to determine whether CSP and TEP are sub-units of the same particle, are distinct particles with different characteristics and behaviors, or are both. Our seawater mesocosm results show that phytoplankton produce both TEP and CSP; however, their highest abundances occur at differences phases in the phytoplankton bloom. We developed a new technique for visualizing stained transparent material in unfiltered aqueous samples with the FlowCAM; this technique allows in-situ visualization and imaging of TEP and CSP in parallel stained samples. Visual examination of stained and unstained TEP and CSP from seawater microcosms, marine algal cultures, and freshwater showed that TEP and CSP have different shape, size and particle-association behavior. In a diatom-dominated microcosm, TEP concentrations were higher than CSP concentrations and unlike CSP, TEP were usually associated with diatom cells or aggregates. The cyanobacteria culture, however, showed higher CSP than TEP concentrations and aggregates of those cells appeared to be CSP-rich. Vertical and seasonal distributions of TEP and CSP in the Sargasso Sea were different. Even though both types of particles were most abundant in the upper 100 m of the water column, CSP closely followed fluorescence and total particle concentration, while the highest TEP concentration was always in the shallowest sample collected. Thus, we conclude that TEP and CSP are different particles, produced by different species at different growth phases and rates. They have different roles and are affected by different processes according to the community composition and environmental conditions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Elsevier
    In:  FEMS Microbiology Ecology, 46 (3). pp. 247-255.
    Publication Date: 2020-03-20
    Description: Observations that the majority of silica dissolution occurs within the upper 200 m of the ocean, and that sedimentation rates of diatom frustules generally do not decrease significantly with depth, suggested reduced dissolution rates of diatoms embedded within sinking aggregates. To investigate this hypothesis, silica dissolution rates of aggregated diatom cells were compared to those of dispersed cells during conditions mimicking sedimentation below the euphotic zone. Changes in the concentrations of biogenic silica, silicic acid, cell numbers, chlorophyll a and transparent exopolymer particles (TEP) were monitored within aggregates and in the surrounding seawater (SSW) during two 42-day experiments. Whereas the concentration of dispersed diatoms decreased over the course of the experiment, the amount of aggregated cells remained roughly constant after an initial increase. Initially only 6% of cells were aggregated and at the end of the experiment more than 60% of cells were enclosed within aggregates. These data imply lower dissolution rates for aggregated cells. However, fluxes of silica between the different pools could not be constrained reliably enough to unequivocally prove reduced dissolution for aggregated cells.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-09-23
    Description: Suspended particles and particle aggregates, which formed from concentrated field samples on the roller table, were characterized biologically and chemically along a transect through the Baltic Sea in summer 1999. Phytoplankton composition in field samples was dominated by cyanobacteria, including the filamentous diazotrophic cyanobacteria Aphanizomenon ‘ baltica’, Nodularia spumigena and Anabaena spp. These species formed aggregates together with diatoms, mainly Skeletonema costatum and Chaetoceros spp. and with dinoflagellates, mainly withDinophysis norvegica . Compared to the Redfield ratio, concentration ratios of particulate organic carbon, nitrogen and phosphorus, [POC]:[PON]:[POP], indicated an enrichment of carbon, especially in aggregates. However, regression analysis indicated a higher production rate of PON relative to POP and POC and significant background concentrations of POC. In field samples the concentration of transparent exopolymer particles (TEP) varied around 200 μg Xanthan Equiv. l−1 and comprised a volume fraction of 2–7 ppm and an abundance of about 105 TEP ml−1. TEP were enriched in aggregates as inferred from volume ratios of TEP to conventional particles. It is suggested, that TEP contribute substantially to the background concentration of POC, while the high production rate of PON is attributed to nitrogen fixation of diazotrophic cyanobacteria.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...