GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2024  (7)
Document type
Publisher
Language
Year
  • 1
    facet.materialart.
    Unknown
    In:  Geochemistry Geophysics Geosystems (G3)
    Publication Date: 2023-01-04
    Description: The magnitude of earthquakes on continental normal faults rarely exceeds 7.0 Mw. However, because of their vicinity to large population centers they can be highly destructive. Long recurrence time, relatively small deformations, and limited observations hinder our understanding of the deformation patterns and mechanisms controlling the magnitude of events. Here, this problem is addressed with 2D thermomechanical modeling of normal fault seismic cycles. The 2020 Samos, Greece Mw7.0 earthquake is used as an example as it is one of the largest and most studied continental normal fault earthquakes. The modeling approach employs visco-elasto-plastic rheology, compressibility, free surface, and a rate-and-state friction law for the fault. Modeling of the Samos earthquake suggests the pore fluid pressure ratio on the fault ranges from 0 to 0.7. The model demonstrates that most of the deformation during interseismic and coseismic periods, besides on the fault, occurs in the hanging wall and footwall below the seismogenic part of the fault. The largest vertical surface displacement during the earthquake is the subsidence of the hanging wall in the vicinity of the fault, while the uplift of the footwall and remote part of the hanging wall is significantly smaller. Modeling of the seismic cycles on normal faults with different setups shows the dependency of the magnitude on the thermal profile and dipping angle of the fault; low heat flow and low dipping angle are favorable conditions for the largest events, while steep normal faults in the areas of high heat flow tend to have the smallest magnitudes.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-01-26
    Description: Controls on the deformation pattern (shortening mode and tectonic style) of orogenic forelands during lithospheric shortening remain poorly understood. Here, we use high-resolution 2D thermomechanical models to demonstrate that orogenic crustal thickness and foreland lithospheric thickness significantly control the shortening mode in the foreland. Pure-shear shortening occurs when the orogenic crust is not thicker than the foreland crust or thick, but the foreland lithosphere is thin (〈70–80 km, as in the Puna foreland case). Conversely, simple-shear shortening, characterized by foreland underthrusting beneath the orogen, arises when the orogenic crust is much thicker. This thickened crust results in high gravitational potential energy in the orogen, which triggers the migration of deformation to the foreland under further shortening. Our models present fully thick-skinned, fully thin-skinned, and intermediate tectonic styles in the foreland. The first tectonics forms in a pure-shear shortening mode whereas the others require a simple-shear mode and the presence of thick (〉∼4 km) sediments that are mechanically weak (friction coefficient 〈∼0.05) or weakened rapidly during deformation. The formation of fully thin-skinned tectonics in thick and weak foreland sediments, as in the Subandean Ranges, requires the strength of the orogenic upper lithosphere to be less than one-third as strong as that of the foreland upper lithosphere. Our models successfully reproduce foreland deformation patterns in the Central and Southern Andes and the Laramide province.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-02-07
    Description: The formation of the Central Andes dates back to ∼50 Ma, but its most pronounced episode, including the growth of the Altiplano-Puna Plateau and pulsatile tectonic shortening phases, occurred within the last 25 Ma. The reason for this evolution remains unexplained. Using geodynamic numerical modeling we infer that the primary cause of the pulses of tectonic shortening and growth of the Central Andes is the changing geometry of the subducted Nazca plate, and particularly the steepening of the mid-mantle slab segment which results in a slowing down of the trench retreat and subsequent increase in shortening of the advancing South America plate. This steepening first happens after the end of the flat slab episode at ∼25 Ma, and later during the buckling and stagnation of the slab in the mantle transition zone. Processes that mechanically weaken the lithosphere of the South America plate, as suggested in previous studies, enhance the intensity of the shortening events. These processes include delamination of the mantle lithosphere and weakening of foreland sediments. Our new modeling results are consistent with the timing and amplitude of the deformation from geological data in the Central Andes at the Altiplano latitude.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-01-19
    Description: The Central Andes (~21°S) is a subduction-type orogeny formed in the last ~50 Ma from the subduction of the Nazca oceanic plate beneath the South American continental plate. However, the most important phases of deformation occur in the last 20 Ma. Pulses of shortening have led to the sudden growth of the by the Altiplano-Puna plateau. Previous studies have provided insights on the importance of various mechanisms on the overall shortening such as the weakening of the overriding plate from crustal eclogitization and delamination, or the importance of a relatively high friction at the subduction interface, and weak sediments in foreland. However none of them has addressed the mechanism behind these shortening pulses yet. Therefore, we built a series of high resolution 2D visco-plastic subduction models using the ASPECT geodynamic code, in which the oceanic plate is buoyancy-driven and the velocity of the continent is prescribed. We have also implemented a realistic geometry for the south American plate at ~30 Ma. We propose a new plausible mechanism (buckling and steepening of the slab) as the cause of these pulses. The buckling leads to the blockage of the trench. Consequently, the difference of velocity between the South American plate and the trench is accommodated by shortening. The data presented here includes the parameters files, for the reference model (S1) and the following alternative simulations: models with variation of the friction at the subduction interface (S2a-c), a model without eclogitization of the lower crust (S3) and a model with higher thermal conductivity of the upper crust (S4). Additionally, this publication includes the initial composition and thermal state of the lithosphere used for the models and a Readme file that gives all the instructions to run them.
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-08-11
    Description: The southern Central Andes (SCA, 27°S–40°S) exhibit a complex deformation pattern that is influenced by multiple factors, including the present-day dip angle of the subducting oceanic Nazca plate and the influence of inherited heterogeneities in the continental South American plate. This study employs a data-driven geodynamic workflow to assess the role of various forcing factors in determining upper-plate strain localization, both above the flat slab and the steeper segment to the south. These include the dip angle of the Nazca plate, the mechanically weak sedimentary basins, the thickness and composition of the continental crust, the strength of the subduction interface, and the plate velocities. Our modeling results predict two main deformation modes: (i) pure-shear shortening in the broken foreland above the flat-slab segment and eastward propagation of deformation, and (ii) simple-shear shortening restricted to the eastern margin of the Andean fold-and-thrust belt above the steep-slab segment. While the convergence velocity and the frictional strength of the subduction interface primarily control the intensity of the deformation, inherited heterogeneities tend to localize deformation, and weak sediments leads to intensified surface deformation. Thicker crust and surface topography also influences strain localization by transferring stress to the eastern orogenic front. Above the flat-slab segment deformation migrates eastward, which is facilitated by enhanced interface coupling. The transition between the steep and sub-horizontal subduction segments is characterized by a diffuse transpressional shear zone, likely controlled by the change in dip geometry of the Nazca plate, and the presence of inherited faults and weak sedimentary basins.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-12-18
    Description: In the southern Central Andes (~32°S), subduction of the Nazca oceanic plate beneath the South American continental plate becomes horizontal. The growth of the Altiplano-Puna Plateau is covalently related to the southward migration of the flat subduction, but the role of subduction geometry and the plate strength on current and long-term deformation of the Andes remains poorly explored. This study takes a data-driven approach of integrating the previous structural and thermal model of the lithosphere of the southern central Andes into a 3D geodynamic model to explore the different parameters contributing to the localization of deformation. We simulate visco-plastic deformation using the geodynamic code ASPECT. The repository includes parameter files and input files for the reference model (S1) and the following alternative simulations: a series of models with variation in friction at the subduction interface (S2a-d), a series of models with variation in sedimentary strength (S3a-d), a series that studies the effect of topography (S4), and a series that studies the effect of plate velocities. In addition, a readme file gives all the instructions to run them.
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    In:  XIII General Meeting of the Russian Mineralogical Society and the Fedorov Session. GMRMS 2021 | Springer Proceedings in Earth and Environmental Sciences
    Publication Date: 2024-02-05
    Description: Polycrystalline aggregates of diamonds, known as bort, framesite, diamondite, are densely cemented aggregates of small (〈1 mm) crystals of both transparent and dark color. The study of fluid inclusions in three samples from the Mir and Udachnaya kimberlite pipes (Yakutia) by IR spectroscopy and GC-MS methods for the first time showed the hydrocarbons and their derivatives contained in them. A total content (from 25.7 to 57.3 rel. %) significantly lower, and the amount of carbon dioxide (up to 39.5 rel. %) and water (up to 41 rel. %) is significantly higher compared to macro-diamonds from kimberlite pipes and placers in Yakutia. The assumption of the possibility of the participation of deep hydrocarbons and CO2 in the formation of diamonds is confirmed.
    Type: info:eu-repo/semantics/bookPart
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...