GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2024  (4)
Document type
Publisher
Years
Year
  • 1
    Publication Date: 2023-02-08
    Description: In this work, we present MorphoCluster, a software tool for data-driven, fast, and accurate annotation of large image data sets. While already having surpassed the annotation rate of human experts, volume and complexity of marine data will continue to increase in the coming years. Still, this data requires interpretation. MorphoCluster augments the human ability to discover patterns and perform object classification in large amounts of data by embedding unsupervised clustering in an interactive process. By aggregating similar images into clusters, our novel approach to image annotation increases consistency, multiplies the throughput of an annotator, and allows experts to adapt the granularity of their sorting scheme to the structure in the data. By sorting a set of 1.2 M objects into 280 data-driven classes in 71 h (16 k objects per hour), with 90% of these classes having a precision of 0.889 or higher. This shows that MorphoCluster is at the same time fast, accurate, and consistent; provides a fine-grained and data-driven classification; and enables novelty detection.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-07
    Description: Deep learning has been successfully applied to many classification problems including underwater challenges. However, a long-standing issue with deep learning is the need for large and consistently labeled datasets. Although current approaches in semi-supervised learning can decrease the required amount of annotated data by a factor of 10 or even more, this line of research still uses distinct classes. For underwater classification, and uncurated real-world datasets in general, clean class boundaries can often not be given due to a limited information content in the images and transitional stages of the depicted objects. This leads to different experts having different opinions and thus producing fuzzy labels which could also be considered ambiguous or divergent. We propose a novel framework for handling semi-supervised classifications of such fuzzy labels. It is based on the idea of overclustering to detect substructures in these fuzzy labels. We propose a novel loss to improve the overclustering capability of our framework and show the benefit of overclustering for fuzzy labels. We show that our framework is superior to previous state-of-the-art semi-supervised methods when applied to real-world plankton data with fuzzy labels. Moreover, we acquire 5 to 10% more consistent predictions of substructures.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-02-07
    Description: Image annotation is a time-consuming and costly task. Previously, we published MorphoCluster as a novel image annotation tool to address problems of conventional, classifier-based image annotation approaches: their limited efficiency, training set bias and lack of novelty detection. MorphoCluster uses clustering and similarity search to enable efficient, computer-assisted image annotation. In this work, we provide a deeper analysis of this approach. We simulate the actions of a MorphoCluster user to avoid extensive manual annotation runs. This simulation is used to test supervised, unsupervised and transfer representation learning approaches. Furthermore, shrunken k-means and partially labeled k-means, two new clustering algorithms that are tailored specifically for the MorphoCluster approach, are compared to the previously used HDBSCAN*. We find that labeled training data improve the image representations, that unsupervised learning beats transfer learning and that all three clustering algorithms are viable options, depending on whether completeness, efficiency or runtime is the priority. The simulation results support our earlier finding that MorphoCluster is very efficient and precise. Within the simulation, more than five objects per simulated click are being annotated with 95% precision.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-01-02
    Description: Consistently high data quality is essential for the development of novel loss functions and architectures in the field of deep learning. The existence of such data and labels is usually presumed, while acquiring high-quality datasets is still a major issue in many cases. Subjective annotations by annotators often lead to ambiguous labels in real-world datasets. We propose a data-centric approach to relabel such ambiguous labels instead of implementing the handling of this issue in a neural network. A hard classification is by definition not enough to capture the real-world ambiguity of the data. Therefore, we propose our method “Data-Centric Classification & Clustering (DC3)” which combines semi-supervised classification and clustering. It automatically estimates the ambiguity of an image and performs a classification or clustering depending on that ambiguity. DC3 is general in nature so that it can be used in addition to many Semi-Supervised Learning (SSL) algorithms. On average, our approach yields a 7.6% better F1-Score for classifications and a 7.9% lower inner distance of clusters across multiple evaluated SSL algorithms and datasets. Most importantly, we give a proof-of-concept that the classifications and clusterings from DC3 are beneficial as proposals for the manual refinement of such ambiguous labels. Overall, a combination of SSL with our method DC3 can lead to better handling of ambiguous labels during the annotation process. (Source code is available at https://github.com/Emprime/dc3).
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...