GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2024  (1)
Document type
Publisher
Years
Year
  • 1
    Publication Date: 2024-02-07
    Description: Highlights • A fiber optic strain cable is used to monitor a fault offshore Catania, Sicily. • Brillouin laser reflectometry detects 2.5 cm of cable elongation on the seafloor. • The cable elongation may be caused by fault slip or by seabottom currents. • Submarine telecom cables are likely suitable to detect deformation on the seafloor. Abstract Oceans cover more than 70 percent of the Earth's surface making it difficult and costly to deploy modern seismological instruments here. The rapidly expanding global network of submarine telecom cables offers tremendous possibilities for seismological monitoring using laser light. Recent pioneer studies have demonstrated earthquake detection using lasers in onland and submarine fiber optic cables. However, permanent strain at the seafloor has never before been measured directly as it happens. With this aim, we deployed a dedicated 6-km-long fiber optic strain cable, offshore Catania Sicily, in 2000 m water depth, and connected it to a 29-km long electro-optical cable for science use. We report here that deformation of the cable equivalent to a total elongation of 2.5 cm was observed over a 21-month period (from Oct. 2020 to Jul. 2022). Brillouin laser reflectometry observations over the first 10 months indicate significant strain (+25 to +40 microstrain) at two locations where the cable crosses an active strike-slip fault on the seafloor, with most of the change occurring between 19 and 21 Nov. 2020. The cause of the strain could be fault slip or seabottom currents. During the following 11 months, the strain amplitude increased to +45 to +55 microstrain, affecting a longer portion of the cable up to 500 m to either side of the first fault crossing. A sandbag experiment performed on the distal portion of the cable (3.2–6.0 km) starting Sept. 2021 demonstrates how the fiber optic cable deforms in response to an applied load and how the deformation signal partially dissipates over time due to the elastic properties of the cable. These preliminary results are highly encouraging for the use of BOTDR (Brillouin Optical Time Domain Reflectometry) laser reflectometry as a technique to detect strain at the seafloor in near real time and to monitor the structural health of submarine cables.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...