GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2024  (3)
Document type
Language
Years
Year
  • 1
    Publication Date: 2024-01-22
    Description: Natural gas is considered a bridging technology in the energy transition because it produces fewer carbon emissions than coal, for example. However, when leaks exist, methane is released into the atmosphere, leading to a dramatic increase in the carbon footprint of natural gas, as methane is a much stronger greenhouse gas than carbon dioxide. Therefore, we conducted a detailed study of methane emissions from gas‐powered end‐use appliances and then compared their climate impacts with those of electricity‐powered appliances. We used the Munich Oktoberfest as a case study and then extended the study to 25 major natural gas consuming countries. This showed that electricity has been the more climate‐friendly energy source at Oktoberfest since 2005, due to the extensive use of renewable electricity at the festival and the presence of methane emissions, particularly caused by the incomplete combustion and leakages of natural gas in cooking and heating appliances. By contrast, at the global level, our study shows that natural gas still produces lower carbon emissions for end‐user appliances than electricity in 18 of the 25 countries studied. However, as the share of renewable energy in the electricity mix steadily increases in most countries, the carbon footprint of electricity will be lower than that of natural gas in these countries in the near future. These findings from our comparison of the total carbon emissions of electric and gas‐powered end‐use appliances can help inform the debate on how to effectively address climate change.
    Description: Plain Language Summary: Although natural gas is considered a relatively climate‐friendly energy source compared to coal, leakage of methane, the main component of natural gas, can significantly increase the climate impact of natural gas. This is because methane is a very strong greenhouse gas. In this study, we focused on methane leakage from end‐use appliances used for cooking and heating. Using the Munich Oktoberfest as a case study, we found that these end‐use appliances produce significant methane emissions. Therefore, we investigated at which leakage rates and which electricity mixes it would be better to use electric appliances for cooking and heating instead to reduce overall carbon emissions. We found that despite leakage rates, natural gas is still more climate‐friendly than electricity in most countries around the world. However, as the share of renewable energy in the electricity mix increases in most countries, electricity is becoming a more climate‐friendly energy source every year. With this study, we want to make people aware of how the climate friendliness of electricity compares to natural gas over time.
    Description: Key Points: Methane emissions at Oktoberfest are measured and classified as natural gas‐based using isotopic analysis and the ratio of ethane to methane. Oktoberfest could save 87% of total carbon emissions from energy consumption if all gas‐powered appliances were replaced with electric ones. We aim to make people aware how the carbon footprint of electric and natural gas‐driven end‐user appliances compares and evolves over time.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: ETH Zürich Foundation http://dx.doi.org/10.13039/501100012652
    Description: Technical University of Munich–Institute for Advanced Study
    Description: German Excellence Initiative
    Description: European Union Seventh Framework Programme
    Description: https://doi.org/10.14459/2022mp1663551
    Description: https://github.com/ankitshekhar99/Oktoberfest2019Study/tree/main
    Keywords: ddc:333.7 ; climate change ; methane ; carbon dioxide ; emissions ; carbon mitigation ; global
    Language: English
    Type: doc-type:article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-02-21
    Description: Methane (CH4) emissions to the atmosphere from the oil and gas sector in Romania remain highly uncertain despite their relevance for the European Union’s goals to reduce greenhouse gas emissions. Measurements of CH4 isotopic composition can be used for source attribution, which is important in top-down studies of emissions from extended areas. We performed isotope measurements of CH4 in atmospheric air samples collected from an aircraft (24 locations) and ground vehicles (83 locations), around oil and gas production sites in Romania, with focus on the Romanian Plain. Ethane to methane ratios were derived at 412 locations of the same fossil fuel activity clusters. The resulting isotopic signals (δ13C and δ2H in CH4) covered a wide range of values, indicating mainly thermogenic gas sources (associated with oil production) in the Romanian Plain, mostly in Prahova county (δ13C from –67.8 ± 1.2 to –22.4 ± 0.04 ‰ Vienna Pee Dee Belmnite; δ2H from –255 ± 12 to –138 ± 11 ‰ Vienna Standard Mean Ocean Water) but also the presence of some natural gas reservoirs of microbial origin in Dolj, Ialomiţa, Prahova, and likely Teleorman counties. The classification based on ethane data was generally in agreement with the one based on CH4 isotopic composition and confirmed the interpretation of the gas origin. In several cases, CH4 enhancements sampled from the aircraft could directly be linked to the underlying production clusters using wind data. The combination of δ13C and δ2H signals in these samples confirms that the oil and gas production sector is the main source of CH4 emissions in the target areas. We found that average CH4 isotopic signatures in Romania are significantly lower than commonly used values for the global fossil fuel emissions. Our results emphasize the importance of regional variations in CH4 isotopes, with implications for global inversion modeling studies. Keywords:
    Description: Published
    Description: 6A. Geochimica per l'ambiente e geologia medica
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-01-12
    Description: In serpentinised peridotite and ultramafic rock systems, methane (CH4) origin is frequently considered abiotic, but variable microbial and thermogenic components can also exist. Typically, the origin of CH4 is studied using bulk, 13C/12C and 2H/H isotopic composition, molecular gas composition, occasionally radiocarbon (14C), microbiology and geological context. Recent advances in CH4-clumped isotope methods have yielded novel insights into the formation of CH4: nonetheless, their interpretation in natural gas samples is often uncertain and requires additional research. Here, we study the origin of the gas released in hyperalkaline (pH 〉 10) springs in the Ronda Peridotite Massifs (southern Spain), combining bulk and clumped CH4 isotopes with molecular gas composition, hydrochemical (Total Organic Carbon and Platinum Group Elements in water), geothermal and geo-structural data. Five springs analysed in 2014 have been re-examined for changes in gas chemistry over time, and three newly discovered gas-bearing springs are analysed for the first time. Regardless of whether springs have microbial or abiotic isotopic fingerprints, we find that bulk CH4 isotopes are fairly stable over a seven-year period. This suggests that the CH4 source(s) or postgenetic processes (such as oxidation and diffusion) have not undergone significant temporal changes. Major variations in H2 and CH4 concentrations in certain springs may be the result of changes in gas pressure and migration intensity. Paired CH4 clumped isotopes (Δ12CH2D2 - Δ13CH3D) were analysed in two bubbling springs, where the presence of CH4 can be interpreted as non-microbial based on 13C enrichment, absence of 14C, and the presence of ethane and propane. However, these isotopes are in disequilibrium, which prevents the quantification of the gas formation temperature. Within the Δ12CH2D2 - Δ13CH3D diagram, the data lie within both the microbialgenic zone, suggested by previous authors, and the abiotic zone that results combining data from laboratory gas synthesis and other natural gas samples. Therefore, attributing a microbial origin to CH4 based only on clumped isotopes is less definite than previously assumed. The amount of Total Organic Carbon appears to be correlated with the origin of CH4, as it is higher in 13C-depleted CH4 samples and lower in 13C-enriched samples. Palladium (Pd) and Rhodium (Rh) dissolved in water (the more soluble Platinum Group Elements) can be a proxy for the chromitite ore deposits contained in plagioclase tectonite layers throughout the investigated area, which may act as catalysts for abiotic CO2 hydrogenation. Clumped isotope disequilibrium and the reported absence of diffuse CH4-bearing fluid inclusions in the peridotites appear to rule out high temperature gas genesis in post-magmatic inclusions. These observations, along with the moderate temperatures at the base of the peridotite massifs and the consistent occurrence of gas along tectonic contacts between serpentinised (H2-bearing) peridotite and carbon-bearing rocks, are compatible with the theory of low-temperature CO2 hydrogenation.
    Description: Published
    Description: 121799
    Description: OSA5: Energia e georisorse
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...