GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2024  (2)
Document type
Publisher
Years
Year
  • 1
    Publication Date: 2023-02-08
    Description: The development and application of geochemical techniques to identify redox conditions in modern and ancient aquatic environments has intensified over recent years. Iron (Fe) speciation has emerged as one of the most widely used procedures to distinguish different redox regimes in both the water column and sediments, and is the main technique used to identify oxic, ferruginous (anoxic, Fe(II) containing) and euxinic (anoxic, sulfidic) water column conditions. However, an international sediment reference material has never been developed. This has led to concern over the consistency of results published by the many laboratories that now utilise the technique. Here, we report an interlaboratory comparison of four Fe speciation reference materials for palaeoredox analysis, which span a range of compositions and reflect deposition under different redox conditions. We provide an update of extraction techniques used in Fe speciation and assess the effects of both test portion mass, and the use of different analytical procedures, on the quantification of different Fe fractions in sedimentary rocks. While atomic absorption spectroscopy and inductively coupled plasma‐optical emission spectrometry produced comparable Fe measurements for all extraction stages, the use of ferrozine consistently underestimated Fe in the extraction step targeting mixed ferrous–ferric minerals such as magnetite. We therefore suggest that the use of ferrozine is discontinued for this Fe pool. Finally, we report the combined data of four independent Fe speciation laboratories to characterise the Fe speciation composition of the reference materials. These reference materials are available to the community to provide an essential validation of in‐house Fe speciation measurements.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-02-08
    Description: The early Cambrian was a critical interval for the Earth system, during which a rise in oceanic and atmospheric oxygen levels coincided with the rapid diversification of metazoans. A variety of contrasting models have been proposed for the spatiotemporal redox evolution of the early Cambrian ocean. These include the development of a well-oxygenated deep ocean at the base of Cambrian Stage 3 (commencing at ~521 Ma), or alternatively, persistent and widespread anoxic (ferruginous) conditions throughout the early Cambrian ocean. Here, we present redox sensitive trace element (RSTE), Fe speciation, and N and C isotope (δ15Nsed and δ13Corg) data for samples from a section (Zhongnancun) of the early Cambrian Niutitang Formation, which was deposited on the outer-shelf of the Yangtze Block, South China. The Fe speciation and RSTE data provide evidence of a transition from euxinic, through ferruginous, to oxic conditions during deposition of the Niutitang Formation. The combination of these new data with existing data from the inner-shelf to basin environment, implies regional redox stratification across the Yangtze Block during Cambrian stages 2 and 3, with oxic shallow waters above ferruginous deep waters, and spatial variability in the degree of mid-depth euxinia. Oxygenation of deeper waters may have occurred by early Cambrian Stage 4 (~514 Ma). A compilation of δ15N values from multiple early Cambrian sections of the Yangtze Block indicate that N2 fixation dominated the nitrogen cycle during late Cambrian Stage 2. Low δ15N values (〈−2‰) preserved in shelf sections can be interpreted to represent partial assimilation of NH4+, where NH4+ was not a limiting nutrient. During the early-middle Cambrian Stage 3, more positive δ15N values (0 to +3‰) are recorded in shelf sections, with lower values (−2 to +2‰) recorded in slope-basin sections. The positive δ15N values observed in shelf sections are likely a consequence of partial denitrification in the water column, whereas coeval deeper water δ15N values of ~0‰ may reflect the dominance of N2 fixation. The distribution of δ15N values, combined with a gradient in δ13Corg values, is consistent with a stratified ocean model. The δ15N values of all sections are lower than those of the modern ocean, which may indicate that the nitrate concentration of the early Cambrian Yangtze ocean was generally low during Cambrian Stage 3. The observed gradient in δ15N values is similar to that observed in records from Mesoproterozoic oceans, suggesting that abundant nitrate availability may have been restricted to shelf environments. We propose that increased nitrogen availability in shelf settings may have contributed to the evolution of large-celled eukaryotic phytoplankton. This provided a positive feedback on ocean oxygenation, allowing for increased complexity in early animal ecosystems on the continental shelf, and ultimately deep water oxygenation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...