GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2024  (3)
Document type
Language
Years
Year
  • 1
    Online Resource
    Online Resource
    San Diego :Elsevier,
    Keywords: Plate tectonics. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (610 pages)
    Edition: 1st ed.
    ISBN: 9780323885867
    DDC: 551.136
    Language: English
    Note: Intro -- Dynamics of Plate Tectonics and Mantle Convection -- Copyright -- Contents -- Contributors -- Preface -- Chapter 1: Introduction to Dynamics of Plate Tectonics and Mantle Convection -- References -- Chapter 2: The Physics and Origin of Plate Tectonics From Grains to Global Scales -- 1. Introduction -- 1.1. In the beginning -- 1.2. Ok, but seriously -- 2. Grain-damage physics -- 2.1. Grain damage in monominerallic materials -- 2.2. Grain damage in polymineralic materials -- 2.3. Grain mixing and hysteresis -- 3. Some applications to plate tectonic origins -- 3.1. Generation and onset of plate tectonics -- 3.2. Collapse of passive margins -- 3.3. Slab detachment -- 3.4. Plates, climate, and planetary evolution -- 4. Future directions: Intragranular defects in grain-damage models -- 4.1. Dislocation dynamics -- 4.2. A dislocation and a grain boundary walk into a bar -- 5. Summary -- Acknowledgment -- References -- Chapter 3: Energetics of the Solid Earth: Implications for the Structure of Mantle Convection -- 1. Introduction -- 2. Seismic observations on the structure of global mantle flow -- 3. Mantle energetics: Roles of gravitational energy release and viscous dissipation -- 4. Current gravitational energy release and viscous dissipation in the Earth's mantle -- 5. Non-hydrostatic internal deflections store relatively minor amounts of gravitational energy -- 6. If upward mantle flow occurs within a low-viscosity D+plume+asthenosphere circuit, then viscous dissipation will be co ... -- 7. Mantle heat loss through the surface -- 8. Radioactive heat production in the Earth's interior -- 9. The Earth's Urey ratio and the mantle's ``missing´´ energy supply -- 10. Secular cooling of the mantle can supply 6.3 TW of long-term power -- 11. The core supplies > -- 15 TW across the core-mantle boundary. , 12. K and U in the core do not provide the core's > -- 15 TW missing source of energy -- 13. Does secular cooling of the core supply > -- 15 TW across the core-mantle boundary? -- 14. Freezing of the inner core may occur over an 815K temperature interval -- 15. Core segregation is probably associated with significant core heating with respect to the mantle -- 16. Implications of seismic and energetics constraints on the structure of mantle convection -- 17. Lower mantle flow: Pattern and speeds -- 18. Upward return flow circuit: Lower mantle plumes -- 19. Upward return flow circuit: Strong lateral flow within the base of the D layer -- 20. Upward return flow circuit: Strong lateral flow in a shallow plume-fed asthenosphere -- 21. Implications of a plume-fed asthenosphere beneath the surface tectonic plates -- 22. Speculations for the Earth's continents and core -- References -- Chapter 4: Influence of Mantle Rheology on the Formation of Plate Tectonic Style of Mantle Convection -- 1. Introduction -- 2. Model description -- 2.1. Parameterization of the strength of rocks -- 2.1.1. The strength of the deep mantle -- 2.1.2. The strength of the lithosphere -- 2.2. Geodynamic modeling -- 2.2.1. Mantle convection simulations -- 2.2.2. Simulation set-up -- 2.2.3. Flow law parameter setting and the diagnostics of style of mantle convection -- 3. Results -- 3.1. Viscosity and stress structures -- 3.2. Details of 1-D stress profiles -- 3.3. Regime diagram -- 4. Discussion and summary -- 4.1. Choice of activation volume in the upper mantle -- 4.2. Summary -- 4.3. Implications and model limitations -- Acknowledgment -- References -- Chapter 5: Tectonic Strain Rates, Diffuse Oceanic Plate Boundaries, and the Plate Tectonic Approximation -- 1. Introduction -- 2. The plate tectonic approximation -- 2.1. What are diffuse oceanic plate boundaries?. , 2.2. What distinguishes narrow oceanic plate boundaries from diffuse oceanic plate boundaries? -- 2.3. What distinguishes intra-oceanic-plate deformation from diffuse oceanic plate boundaries? -- 2.4. What early evidence and analysis supported the existence of diffuse oceanic plate boundaries? -- 2.5. Are plates rigid? Is the lithosphere rigid? -- 2.6. Horizontal thermal contraction of the oceanic lithosphere -- 2.7. Do transform faults parallel plate motion? -- 2.8. States of the lithosphere and the boundaries in strain rate and force per unit length that separate them -- 2.9. Location of poles of relative rotation between plates separated by a diffuse oceanic plate boundary -- 2.10. The torque that one plate applies to another (and vice versa) across a diffuse oceanic plate boundary -- 2.11. The vertically averaged rheology of deforming oceanic lithosphere in diffuse oceanic plate boundaries -- 2.12. An outstanding problem: Non-closure of the Pacific-Cocos-Nazca plate circuit -- 3. Concluding remarks -- References -- Chapter 6: Tectonics is a Hologram -- 1. Introduction -- 2. The program of plate-like tectonic emergence in convection models: Pseudo-plasticity -- 2.1. Context -- 2.2. Without and with pseudo-plasticity -- 2.3. On temperature-dependent viscosity -- 3. The whole is bigger than the sum of the parts. The whole is smaller than the sum of the parts -- 3.1. Continental drift -- 3.2. Seafloor spreading -- 3.3. Transform zones -- 3.4. Subduction -- 3.4.1. Downwellings or subduction? -- 3.4.2. Onset of subduction -- 4. Outlook -- 5. Final thoughts -- Acknowledgments -- References -- Chapter 7: Internal Planetary Feedbacks, Mantle Dynamics, and Plate Tectonics -- 1. Introduction -- 2. Thermal cycles, thermal-hydrocycles, and internal Earth cooling feedbacks -- 3. Mantle dynamics and mantle viscosity structure feedbacks. , 4. Boundary-layer interactions and plate-plume feedbacks -- 5. Plate tectonics-mantle dynamics feedbacks and bootstrap hypotheses -- 6. Discussion and conclusion -- Acknowledgment -- References -- Further reading -- Chapter 8: Tectono-Convective Modes on Earth and Other Terrestrial Bodies -- 1. Historical introduction -- 2. Tectono-convective modes -- 2.1. Iso-chemical modes -- 2.2. Magmatism-induced modes -- 2.3. Influence of compositional variations on tectonic modes -- 2.4. Successes and problems of yielding-induced plate tectonics -- 2.4.1. Successes -- 2.4.2. Problems -- 2.5. Physical mechanisms for strain weakening and memory -- 3. Tectono-convective evolution of terrestrial bodies -- 3.1. Earth -- 3.2. Venus -- 3.3. Io -- 3.4. Mars -- 3.5. Exoplanets -- 4. Discussion -- References -- Chapter 9: The Past and the Future of Plate Tectonics and Other Tectonic Regimes -- 1. The past of plate tectonics -- 2. The present of plate tectonics -- 3. Beyond the Earth: Tectonics of other rocky planets and moons -- 3.1. Stagnant lid -- 3.2. Heat pipe -- 3.3. Episodic lid -- 3.4. Plutonic-squishy lid -- 3.5. Ridge only -- 4. Future of plate tectonics and other tectonic regimes -- 4.1. Earth's tectonic evolution -- 4.1.1. What was/were the tectonic regime(s) active on the Earth? -- 4.1.2. When did plate tectonics start? -- 4.2. Will we find plate tectonics in another planets? -- 5. Notes on how to evolve our understanding of planets evolution -- 5.1. Physics and numerical modeling -- 5.2. Paradigm shift -- Acknowledgments -- References -- Chapter 10: How Mantle Convection Drives the Supercontinent Cycle: Mechanism, Driving Force, and Substantivity -- 1. Introduction -- 2. Numerical simulation of mantle convection -- 3. Dynamic interaction between mantle convection and continental drift -- 4. Driving force of plate motion. , 5. Mechanism and driving force of supercontinental breakup -- 6. Mechanism and driving force of supercontinental formation -- 6.1. Prediction of future continental drift -- 6.2. Analyses of the driving force -- 7. Basal drag under continental plates -- 8. Stability of the cratonic lithosphere -- 9. Substantivity of the supercontinent cycle in the future -- 10. Summary -- Acknowledgments -- Appendix A. Descriptions of numerical simulation models -- Appendix B. Supplementary material -- References -- Chapter 11: Observations and Models of Dynamic Topography: Current Status and Future Directions -- 1. Introduction -- 2. Present-day dynamic topography -- 2.1. Observational estimates -- 2.2. Oceanic residual topography dataset -- 2.2.1. Spot measurements -- 2.2.2. Shiptrack-derived measurements -- 2.3. Global representation of observational dataset -- 2.4. Predictions from simulations of mantle flow -- 2.4.1. Modeling approach and end-member cases -- 2.4.2. Physical properties: Density and viscosity -- 2.4.3. Synthetic predictions of dynamic topography -- 2.4.4. Comparisons with the observed geoid -- 2.5. Summary of present-day dynamic topography -- 3. Dynamic topography into the geological past -- 3.1. Observational constraints -- 3.2. Computational approaches for dynamic topography reconstructions -- 3.3. Time-dependent global predictions of dynamic topography -- 3.4. Outlook: Improving dynamic topography reconstructions into the geological past -- Data availability -- Acknowledgments -- References -- Chapter 12: Feedbacks Between Internal and External Earth Dynamics -- 1. The ground up -- 2. The ground down -- 3. Merging concepts toward an integrative understanding of the Earth system -- 4. A long way to go -- 4.1. Feedbacks between internal and external dynamics in extensional settings -- 4.2. The geological carbon cycle. , 4.3. Feedbacks between internal and external dynamics and effects on the evolution of life.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    San Diego :Elsevier,
    Keywords: Tides. ; Tides-History. ; Oceanography. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (468 pages)
    Edition: 1st ed.
    ISBN: 9780323908528
    DDC: 551.464
    Language: English
    Note: Intro -- A Journey Through Tides -- Copyright -- Dedication -- Contents -- Contributors -- Editors biography -- Preface -- Acknowledgments -- Section 1: Fundamentals -- Chapter 1: Tidal science before and after Newton -- 1. Introduction -- 2. Aspects of the tides known since antiquity -- 3. Investigations of the tides before Newton -- 4. Isaac Newton's Principia Mathematica -- 5. Essays for the Académie Royale des Sciences -- 6. Before and after Newton -- 7. Conclusions -- Acknowledgments -- References -- Chapter 2: Introducing the oceans -- 1. Our blue planet -- 2. Physical properties of seawater -- 3. Geography and ocean circulation -- 4. Key water masses and global distributions -- 5. Oceanic impact on and sensitivity to Earth's climate -- Acknowledgments -- References -- Chapter 3: A brief introduction to tectonics -- 1. Tectonics -- 1.1. Early ideas -- 1.2. Paradigm shift -- 1.3. The theory of plate tectonics -- 1.4. The modern conception of plate tectonics -- 2. Earth's tectonic cycles -- 2.1. The Wilson cycle -- 2.2. The supercontinent cycle -- 2.3. The supertidal cycle -- References -- Chapter 4: Why is there a tide? -- 1. Introduction to tides -- 1.1. The importance of tides -- 1.2. The ups and downs of the seas -- 1.3. The dance of the Earth and the Moon -- 1.4. The tide generating force -- 2. Tidal theories -- 2.1. Equilibrium theory of tides -- 2.2. Why the tide does not behave as an equilibrium tide -- 2.3. The effects of Earth's rotation on the tide -- 2.4. The dynamic theory of tides -- 3. Tides in the real world -- 3.1. The tide as a shallow water wave -- 3.2. Standing and progressive waves -- 3.3. Resonance -- 3.4. Coriolis effect, geostrophy, and Kelvin waves -- 3.5. Barotropic and baroclinic tides -- 3.6. Tidal currents -- 3.7. Tidal charts -- 4. Tidal energetics and energy losses -- 4.1. Tidal friction -- 4.2. Internal tides. , 5. Chapter summary -- References -- Section 2: A tidal journey through time -- Chapter 5: A timeline of Earth's history -- 1. Geological time -- 2. Chrono-stratigraphy -- 3. The geological timescale -- 4. Main events in Earth's history -- 4.1. The Hadean Eon (4600-4000Ma) -- 4.2. Archean Eon (4000-2500Ma) -- 4.3. Proterozoic Eon (2500Ma-541Ma) -- 4.4. Phanerozoic Eon (541-0Ma) -- 5. Final remarks -- References -- Chapter 6: Hadean and Archean (4600-2500 Ma) -- 1. Introduction -- 2. Methods -- 2.1. Tidal modeling -- 2.2. Bathymetry -- 3. Results -- 3.1. Present-day Earth bathymetry -- 3.2. Venusian topography -- 3.3. Archean ensemble -- 4. Discussion -- References -- Chapter 7: Proterozoic (2500-541Ma) -- 1. Introduction -- 2. Methods -- 2.1. Tidal modeling -- 2.2. Bathymetry -- 2.3. Simulations and computations -- 3. Results -- 3.1. Present-day validation -- 3.2. Tidal evolution 1500-750Ma -- 3.3. Tidal evolution 750-540Ma -- 4. Summary -- Acknowledgments -- References -- Chapter 8: Phanerozoic (541Ma-present day) -- 1. Introduction -- 2. Tectonics -- 3. ``It's life, Jim, but not as we know it´´ -- 4. The ups and downs of phanerozoic tides -- 5. Methods -- 5.1. Tidal modeling -- 5.2. Reconstructions -- 5.3. Simulations -- 5.4. Present day validation -- 6. Results -- 6.1. Paleozoic (541-252Ma) -- 6.2. Mesozoic (252-66Ma) -- 6.3. Cenozoic (66-0Ma) -- 6.4. Other constituents -- 7. Case studies -- 7.1. The Devonian -- 7.2. The Eocene -- 7.3. Extinctions -- 8. Summary -- Acknowledgments -- References -- Chapter 9: Present day: Tides in a changing climate -- 1. Introduction -- 2. Climate and sea level through the late Quaternary -- 2.1. The Last Glacial Cycle -- 2.2. The Last Glacial Maximum -- 2.3. The Last Deglacial -- 2.4. The Holocene -- 2.5. Late Holocene to present day -- 2.6. Future -- 3. Modeling the tides during the late Pleistocene and Holocene. , 3.1. Tide model -- 3.2. Bathymetries and simulations -- 4. Tides during the late Pleistocene, Holocene, and into the future -- 4.1. Tides during the Last Glacial Cycle and late Pleistocene -- 4.1.1. Semi-diurnal tidal changes -- 4.1.2. Changes in the principle diurnal tidal constituent -- 4.1.3. Implications for tidal changes during the late Pleistocene -- 4.2. Tidal dynamics during the Last Glacial Maximum -- 4.2.1. Tidal elevation amplitudes -- 4.2.2. Tidal energy losses -- 4.2.3. Consequences of altered LGM tidal dynamics -- 4.3. Tidal changes through the Deglacial and the Holocene -- 4.3.1. Global changes in tidal dynamics -- 4.3.2. Regional changes in tides during the mid and late Holocene -- 4.3.3. Effects of deglacial tidal changes -- 4.4. Changes in tides since the preindustrial era -- 4.4.1. Observed tidal trends: The tide gauge record and satellite altimetry -- 4.4.2. What is driving today's changes in the tides? -- 4.5. Future changes in the tides -- 5. Summary -- References -- Chapter 10: Into the future -- 1. Introduction -- 2. Methods -- 2.1. Tidal modeling -- 2.2. Maps of the future -- 3. Results -- 3.1. Present-day validation -- 3.2. Pangea ultima -- 3.3. Novopangea -- 3.4. Aurica -- 3.5. Amasia -- 4. Discussion -- References -- Section 3: Consequences of living on a tidal planet -- Chapter 11: Tides at a coast -- 1. Introduction -- 2. Tides at the coast -- 3. Tidal interactions with other physical processes -- 3.1. Tidal interaction with the atmosphere at the coast -- 3.2. Tidal interaction with regions of freshwater -- 3.3. Tidal interactions with wind generated sea surface waves at the coast -- 4. Transport of matter -- 4.1. Turbulent mixing and the flushing of coastal seas -- 4.2. Transport of properties and materials -- 5. Tidal observations at the coast -- 5.1. Tide gauge networks -- 5.2. Measurement technology. , 5.3. Data types -- 5.4. Quality control and data analysis -- 5.5. Sea-level rise (SLR), climate assessments and storm surges -- 5.6. Acceleration of SLR and SLR modulating tidal constituents -- 6. Tidal applications -- 6.1. Predictions for ports and harbors -- 6.2. Tidal datums -- 6.3. Predictions for flood forecasting -- 6.4. Tidal power -- 6.5. Summary -- Acknowledgments -- References -- Chapter 12: Tidal rhythmites: Their contribution to the characterization of tidal dynamics and environments -- 1. Introduction -- 2. Tidalites and tidal rhythmites: Definition and first description -- 3. Methodology for tidal rhythmite recognition -- 4. Environments of deposition of tidal rhythmites -- 5. Implications of tidal rhythmite recognition and interpretation -- 5.1. Tidal rhythmites as proxies for ancient tidal dynamic and environment identification, and paleogeographic reconstruction -- 5.2. Tidal rhythmites as proxies of depositional elevation in a tidal environment -- 5.3. Tidal rhythmites as proxies of sedimentation rate measurement and time deposition estimates -- 5.4. Tidal rhythmites as proxies of orbital parameter changes of the Earth-Moon system -- 6. Conclusion -- Acknowledgments -- References -- Chapter 13: Tides: Lifting life in the ocean -- 1. The productive ocean -- 2. The biological carbon pump -- 3. A nutrient-rich interior ocean -- 4. A nutrient-limited surface ocean -- 5. Mixing nutrients up -- 6. Mixing life down -- 7. Shining light in the deep -- 8. Succession and mortality -- 9. Ecosystem productivity -- 10. A role for tides, turbulence, and deep production -- References -- Chapter 14: Tides, earthquakes, and volcanic eruptions -- 1. Introduction -- 2. Data and methods to study the tidal influence on faults and volcanoes -- 2.1. Observations -- 2.2. Methods to evaluate tidal influence on seismic and volcanic activity. , 3. Case studies of tidal control on earthquakes and volcanoes -- 3.1. Tectonic systems -- 3.1.1. Continental faults: The San Andreas fault, California -- 3.1.2. Subduction zones: Japan -- 3.2. Volcanic settings -- 3.2.1. Unrest calderas: The hydrothermal system of Campi Flegrei, Italy -- 3.2.2. Erupting volcanic systems: Short to long-term tidal influence -- 4. How do tides influence seismic and volcanic activity? -- 5. Summary and future outlook -- Acknowledgments -- References -- Chapter 15: Solid Earth tides -- 1. Introduction -- 2. Traditional theory and inferences from observations -- 2.1. Love-Shida numbers -- 2.2. Extensions to Love-Shida theory -- 2.2.1. Rotation -- 2.2.2. Laterally heterogeneous Earth structure -- 2.2.3. Anelasticity -- 2.3. Ocean tide loading -- 3. Tides on a complicated Earth -- 3.1. Connection to free oscillation theory -- 3.2. Equivalence with Love-Shida numbers -- 3.3. Anelastic Love numbers -- 3.4. Departure from spherical symmetry -- 4. Constraining Earth's structure -- 5. Future tidal study -- References -- Chapter 16: Atmospheric tides-An Earth system signal -- 1. Introduction -- 2. Solar tides -- 3. Lunar tides -- 4. Importance of atmospheric tides -- 4.1. Atmosphere-ionosphere coupling -- 4.2. Constraints on tropospheric processes -- 4.3. Geodesy -- 5. Beyond Earth's modern atmosphere -- 5.1. Tidal braking and Precambrian day length -- 5.2. Superrotation of Venus -- 5.3. Summary remark -- Acknowledgments -- References -- Chapter 17: Tidal drag in exoplanet oceans -- 1. Introduction -- 2. Water in the cosmos -- 3. Exoplanet oceans -- 4. Ocean tides on exoplanets -- 5. Summary -- References -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Book
    Book
    Amsterdam : Elsevier
    Type of Medium: Book
    Pages: xix, 445 Seiten , Illustrationen, Diagramme
    ISBN: 9780323908511
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...