GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-02-25
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Brazelton, W. J., McGonigle, J. M., Motamedi, S., Pendleton, H. L., Twing, K. I., Miller, B. C., Lowe, W. J., Hoffman, A. M., Prator, C. A., Chadwick, G. L., Anderson, R. E., Thomas, E., Butterfield, D. A., Aquino, K. A., Fruh-Green, G. L., Schrenk, M. O., & Lang, S. Q. Metabolic strategies shared by basement residents of the lost city hydrothermal field. Applied and Environmental Microbiology, 88(17), (2022): e00929-22, https://doi.org/10.1128/aem.00929-22.
    Description: Alkaline fluids venting from chimneys of the Lost City hydrothermal field flow from a potentially vast microbial habitat within the seafloor where energy and organic molecules are released by chemical reactions within rocks uplifted from Earth’s mantle. In this study, we investigated hydrothermal fluids venting from Lost City chimneys as windows into subseafloor environments where the products of geochemical reactions, such as molecular hydrogen (H2), formate, and methane, may be the only available sources of energy for biological activity. Our deep sequencing of metagenomes and metatranscriptomes from these hydrothermal fluids revealed a few key species of archaea and bacteria that are likely to play critical roles in the subseafloor microbial ecosystem. We identified a population of Thermodesulfovibrionales (belonging to phylum Nitrospirota) as a prevalent sulfate-reducing bacterium that may be responsible for much of the consumption of H2 and sulfate in Lost City fluids. Metagenome-assembled genomes (MAGs) classified as Methanosarcinaceae and Candidatus Bipolaricaulota were also recovered from venting fluids and represent potential methanogenic and acetogenic members of the subseafloor ecosystem. These genomes share novel hydrogenases and formate dehydrogenase-like sequences that may be unique to hydrothermal environments where H2 and formate are much more abundant than carbon dioxide. The results of this study include multiple examples of metabolic strategies that appear to be advantageous in hydrothermal and subsurface alkaline environments where energy and carbon are provided by geochemical reactions.
    Description: This work was supported by NSF awards to W.J.B. and S.Q.L. (OCE-1536702/1536405), the NASA Astrobiology Institute Rock-Powered Life team, a NASA Postdoctoral fellowship to J.M.M., the Swiss National Science Foundation, and the Deep Carbon Observatory.
    Keywords: Acetogenesis ; Formate ; Hydrogenase ; Hydrothermal ; Metagenomics ; Methanogenesis ; Serpentinization ; Sulfate reduction
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-02-08
    Description: The Endeavour Segment of the Juan de Fuca Ridge is well known for its abundance of hydrothermal vents and chimneys. One-meter scale multibeam mapping data collected by an autonomous undersea vehicle revealed 572 chimneys along the central 14 km of the segment, although only 47 are named and known to be active. Hydrothermal deposits are restricted to the axial graben and the near-rims of the graben above a seismically mapped axial magma lens. The sparse eruptive activity on the segment during the last 4,300 years has not buried inactive chimneys, as occurs at more magmatically robust mid-ocean ridges.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...