GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-02-08
    Description: Mediterranean tectonics since the Lower Cretaceous has been characterized by a multi‐phase subduction and collision history with temporally and spatially‐variable, small‐scale plate configurations. A new shear‐wave velocity model of the Mediterranean upper mantle (MeRE2020), constrained by a very large set of over 200,000 broadband (8‐350 s), inter‐station, Rayleigh‐wave, phase‐velocity curves, illuminates the complex structure and fragmentation of the subducting slabs. Phase‐velocity maps computed using these measurements were inverted for depth‐dependent, shear‐wave velocities using a stochastic particle‐swarm‐optimization algorithm (PSO). The resulting three‐dimensional (3‐D) model makes possible an inventory of slab segments across the Mediterranean. Fourteen slab segments of 200‐800 km length along‐strike are identified. We distinguish three categories of subducted slabs: attached slabs reaching down to the bottom of the model; shallow slabs of shorter length in down‐dip direction, terminating shallower than 300 km depth; and detached slab segments. The location of slab segments are consistent with and validated by the intermediate‐depth seismicity, where it is present. The new high‐resolution tomography demonstrates the intricate relationships between slab fragmentation and the evolution of the relatively small and highly curved subduction zones and collisional orogens characteristic of the Mediterranean realm.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-07
    Description: Crystallographic preferred orientation (CPO) and the associated seismic anisotropy of serpentinites are important factors for the understanding of tectonic settings involving hydrated Earth´s mantle, for example, at slow-spreading mid-ocean ridges. CPO of lizardite and magnetite in low-grade metamorphic serpentinites from the Atlantis Massif oceanic core complex (Mid-Atlantic Ridge, 30°N) were determined using synchrotron high energy X-ray diffraction in combination with Rietveld texture analysis. Serpentinite mesh structures show weak CPO while deformed samples show a single (0001) maximum perpendicular to the foliation. Seismic anisotropies calculated from CPO show up to 〉11% anisotropy for compressional waves (Vp) and shear wave splitting up to 0.38 km/s in the deformed samples. This indicates that deformation in shear zones controls elastic anisotropy and highlights its importance in defining the seismic signature of hydrated upper mantle.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-02-07
    Description: Highlights • Crust and mantle lithospheric structures beneath the eastern Mediterranean Sea are resolved from the joint inversion of surface wave measurements and wide-angle refraction seismics. • Vp/Vs and Poisson's ration estimates point to the presence of serpentinized oceanic crust beneath the Ionian Basin and thinned continental crust beneath the Levant Basin. • Oceanic lithosphere in the eastern Mediterranean Sea consists of three different domains: a) 180 km thick, Triassic Ionian lithosphere, b) 200 km thick, Permo-Carboniferous lithosphere beneath the Central Eastern Mediterranean and c) 180 km thick lithosphere beneath the eastern Herodotus Basin. • Thin continental lithosphere (75 km thick) beneath the Levant Basin underlain by the shallow Middle East Asthenosphere. • The spatial correlation between the shallow Middle East Asthenosphere and the Dead Sea Fault reveals focusing of lithospheric deformation in an area of thinned lithosphere. Abstract The tectonic plate under the eastern Mediterranean Sea shows a remarkable variability as it comprises Earth's oldest oceanic lithosphere as well as the transition towards continental lithosphere beneath the Levant Basin. Its thickness and other properties offer essential information on the lithospheric evolution but have been difficult to determine seismically due to the high heterogeneity of the region and its complex crustal structure. Here, we combine a large, new surface wave dataset with published wide-angle data in order to determine lithospheric properties in the eastern Mediterranean. Our stochastic inversions of broad-band, phase-velocity dispersion measurements resolve the crust-mantle structural trade-offs and yield robust, 1-D shear-wave velocity models down to 300 km depth beneath the Ionian and Levant Basins. The thickness of the crust beneath the two locations is 16.4 ± 3 km and 22.3 ± 2 km, respectively. The Poisson's ratio (σ) of 0.32 and Vp/Vs of 1.93 in the crystalline crust confirm the presence of serpentinized oceanic crust beneath the Ionian Basin. Beneath the Levant Basin, low crustal Vp/Vs (∼ 1.7) and Poisson's (∼ 0.24) ratios indicate continental crust. Beneath the Ionian Basin, the lithosphere is about 180 km thick. By contrast, thin, 75 km thick lithosphere is found beneath the Levant Basin. S-velocity tomography based on surface wave data also shows thick, spatially variable oceanic mantle lithosphere beneath the eastern Mediterranean. Thickness of the oceanic lithosphere increases eastwards from the Triassic Ionian towards the Permo-Carboniferous lithosphere in the Central Eastern Mediterranean. These results demonstrate that oceanic lithosphere can thicken by cooling substantially beyond the limits suggested by the plate cooling model. Beneath the eastern Herodotus oceanic Basin, lithospheric thickness is decreasing to about 180 km. Thin continental lithosphere and shallow asthenosphere are present beneath the Dead Sea Fault, demonstrating that the localization of the lithospheric deformation and crustal seismicity along the fault correlates spatially with the thinning of the underlying continental lithosphere.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-04-20
    Description: Raw multibeam bathymetry data were recorded on RV Maria S. Merian during MSM17/1 using Kongsberg EM120 multibeam echosounder. The cruise took place between 24.11. – 29.12.2010, (Mindelo, Cape Verde – Walvis Bay, Namibia) in the Atlantic Ocean. Data were recorded throughout the whole time with an approximate average depth of around 2500m. Data are unprocessed and can therefore contain incorrect depth measurements (artifacts) if not further processed. Note that refraction errors can be expected due to the lack of proper SVP. Data were acquired within the objective: Plumes, Large Igneous Province Rocks and associated deformation: a geophysical study of Walvis Ridge, offshore Namibia. The data are archived at the Federal Maritime and Hydrographic Agency of Germany (Bundesamt für Seeschifffahrt und Hydrographie, BSH) and provided to PANGAEA database for data curation and publication. Data publication is accomplished within work package 2 of the EU Horizon 2020 project iAtlantic- Integrated Assessment of Atlantic Marine Ecosystem in Space and Time (https://www.iatlantic.eu/).
    Keywords: Bathymetry; Binary Object; Binary Object (File Size); Binary Object (Media Type); Comment; Data file recording distance; Data file recording duration; DATE/TIME; ELEVATION; Event label; Extracted from file; Extracted with MB-System; File content; iAtlantic; Integrated Assessment of Atlantic Marine Ecosystems in Space and Time; Kongsberg datagram raw file name; LATITUDE; LONGITUDE; Maria S. Merian; MSM17/1; MSM17/1_0_Underway-1; Multibeam Echosounder; Number of pings; Ship speed; Start of data file, depth; Start of data file, heading; Start of data file recording, date/time; Start of data file recording, latitude; Start of data file recording, longitude; Stop of data file, depth; Stop of data file, heading; Stop of data file recording, date/time; Stop of data file recording, latitude; Stop of data file recording, longitude; Swath-mapping system Simrad EM-120 (Kongsberg Maritime AS)
    Type: Dataset
    Format: text/tab-separated-values, 15086 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...