GLORIA

GEOMAR Library Ocean Research Information Access

You have 0 saved results.
Mark results and click the "Add To Watchlist" link in order to add them to this list.

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2023
    In:  Journal of Advances in Modeling Earth Systems Vol. 15, No. 5 ( 2023-05)
    In: Journal of Advances in Modeling Earth Systems, American Geophysical Union (AGU), Vol. 15, No. 5 ( 2023-05)
    Abstract: Model scheme complexity brings about a bouquet of problems, from hindering interpretability to hiding unforced modeler choices Using sensitivity analysis on an emulated perturbed parameter ensemble we characterize the two cloud microphysics schemes of ECHAM‐HAM We find potential for process simplifications as well as instances where model sensitivities deviate from a priori physical understanding
    Type of Medium: Online Resource
    ISSN: 1942-2466 , 1942-2466
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2023
    detail.hit.zdb_id: 2462132-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Copernicus GmbH ; 2022
    In:  Atmospheric Chemistry and Physics Vol. 22, No. 7 ( 2022-04-12), p. 4737-4762
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 22, No. 7 ( 2022-04-12), p. 4737-4762
    Abstract: Abstract. Cloud properties and their evolution influence Earth's radiative balance. The cloud microphysical (CMP) processes that shape these properties are therefore important to represent in global climate models. Historically, parameterizations in these models have grown more detailed and complex. However, a simpler formulation of CMP processes may leave the model results mostly unchanged while enabling an easier interpretation of model results and helping to increase process understanding. This study employs sensitivity analysis of an emulated perturbed parameter ensemble of the global aerosol–climate model ECHAM-HAM to illuminate the impact of selected CMP cloud ice processes on model output. The response to the perturbation of a process serves as a proxy for the effect of a simplification. Autoconversion of ice crystals is found to be the dominant CMP process in influencing key variables such as the ice water path and cloud radiative effects, while riming of cloud droplets on snow has the most influence on the liquid phase. Accretion of ice and snow and self-collection of ice crystals have a negligible influence on model output and are therefore identified as suitable candidates for future simplifications. In turn, the dominating role of autoconversion suggests that this process has the greatest need to be represented correctly. A seasonal and spatially resolved analysis employing a spherical harmonics expansion of the data corroborates the results. This study introduces a new application for the combination of statistical emulation and sensitivity analysis to evaluate the sensitivity of a complex numerical model to a specific parameterized process. It paves the way for simplifications of CMP processes leading to more interpretable climate model results.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2022
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Copernicus GmbH ; 2021
    In:  Atmospheric Chemistry and Physics Vol. 21, No. 6 ( 2021-04-01), p. 5195-5216
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 21, No. 6 ( 2021-04-01), p. 5195-5216
    Abstract: Abstract. Clouds and cloud feedbacks represent one of the largest uncertainties in climate projections. As the ice phase influences many key cloud properties and their lifetime, its formation needs to be better understood in order to improve climate and weather prediction models. Ice crystals sedimenting out of a cloud do not sublimate immediately but can survive certain distances and eventually fall into a cloud below. This natural cloud seeding can trigger glaciation and has been shown to enhance precipitation formation. However, to date, an estimate of its occurrence frequency is lacking. In this study, we estimate the occurrence frequency of natural cloud seeding over Switzerland from satellite data and sublimation calculations. We use the DARDAR (radar lidar) satellite product between April 2006 and October 2017 to estimate the occurrence frequency of multi-layer cloud situations, where a cirrus cloud at T 〈 −35 ∘C can provide seeds to a lower-lying feeder cloud. These situations are found to occur in 31 % of the observations. Of these, 42 % have a cirrus cloud above another cloud, separated, while in 58 % the cirrus is part of a thicker cloud, with a potential for in-cloud seeding. Vertical distances between the cirrus and the lower-lying cloud are distributed uniformly between 100 m and 10 km. They are found to not vary with topography. Seasonally, winter nights have the most multi-layer cloud occurrences, in 38 % of the measurements. Additionally, in situ and liquid origin cirrus cloud size modes can be identified according to the ice crystal mean effective radius in the DARDAR data. Using sublimation calculations, we show that in a significant number of cases the seeding ice crystals do not sublimate before reaching the lower-lying feeder cloud. Depending on whether bullet rosette, plate-like or spherical crystals were assumed, 10 %, 11 % or 20 % of the crystals, respectively, could provide seeds after sedimenting 2 km. The high occurrence frequency of seeding situations and the survival of the ice crystals indicate that the seeder–feeder process and natural cloud seeding are widespread phenomena over Switzerland. This hints at a large potential for natural cloud seeding to influence cloud properties and thereby the Earth's radiative budget and water cycle, which should be studied globally. Further investigations of the magnitude of the seeding ice crystals' effect on lower-lying clouds are necessary to estimate the contribution of natural cloud seeding to precipitation.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2021
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Quarterly Journal of the Royal Meteorological Society, Wiley, Vol. 148, No. 743 ( 2022-01), p. 943-961
    Abstract: Changes in the ambient aerosol concentration are known to affect the microphysical properties of clouds. Especially regarding precipitation formation, increasing aerosol concentrations are assumed to delay the precipitation onset, but may increase precipitation rates via convective invigoration and orographic spillover further downstream. In this study, we analyse the effect of increased aerosol concentrations on a heavy precipitation event observed in summer 2017 over northeastern Switzerland, an event which was considerably underestimated by the operational weather forecast model. Preceding the precipitation event, Saharan dust was advected towards the Alps, which could have contributed to increased precipitation rates north of the Alpine ridge. To investigate the potential impact of the increased ambient aerosol concentrations on surface precipitation, we perform a series of sensitivity simulations using the Consortium for Small‐scale Modeling (COSMO) model with different microphysical parametrizations and prognostic aerosol perturbations. The results show that the choice of the microphysical parametrization scheme in terms of a one‐ or two‐moment scheme has the relatively largest impact on surface precipitation rates. In the one‐moment scheme, surface precipitation is strongly reduced over the Alpine ridge and increased further downstream. Simulated changes in surface precipitation in response to aerosol perturbations remain smaller in contrast to the impact of the microphysics scheme. Elevated cloud condensation nuclei (CCN) concentrations lead to increased cloud water and decreased cloud ice mass, especially in regions of high convective activity south of the Alps. These altered cloud properties indeed increase surface precipitation further downstream, but the simulated change is too small to explain the observed heavy precipitation event. Additional ice‐nucleating particles (INPs) increase cloud ice mass, but only trigger local changes in downstream surface precipitation. Thus, increased aerosol number concentrations during the Saharan dust outbreak are unlikely to have caused the heavy precipitation event in summer 2017.
    Type of Medium: Online Resource
    ISSN: 0035-9009 , 1477-870X
    URL: Issue
    RVK:
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2022
    detail.hit.zdb_id: 3142-2
    detail.hit.zdb_id: 2089168-4
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Cambridge University Press (CUP) ; 2023
    In:  Environmental Data Science Vol. 2 ( 2023)
    In: Environmental Data Science, Cambridge University Press (CUP), Vol. 2 ( 2023)
    Abstract: Cirrus clouds are key modulators of Earth’s climate. Their dependencies on meteorological and aerosol conditions are among the largest uncertainties in global climate models. This work uses 3 years of satellite and reanalysis data to study the link between cirrus drivers and cloud properties. We use a gradient-boosted machine learning model and a long short-term memory network with an attention layer to predict the ice water content and ice crystal number concentration. The models show that meteorological and aerosol conditions can predict cirrus properties with R 2  = 0.49. Feature attributions are calculated with SHapley Additive exPlanations to quantify the link between meteorological and aerosol conditions and cirrus properties. For instance, the minimum concentration of supermicron-sized dust particles required to cause a decrease in ice crystal number concentration predictions is 2 × 10 −4  mg/m 3 . The last 15 hr before the observation predict all cirrus properties.
    Type of Medium: Online Resource
    ISSN: 2634-4602
    Language: English
    Publisher: Cambridge University Press (CUP)
    Publication Date: 2023
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Royal Society of Chemistry (RSC) ; 2022
    In:  Physical Chemistry Chemical Physics Vol. 24, No. 46 ( 2022), p. 28213-28221
    In: Physical Chemistry Chemical Physics, Royal Society of Chemistry (RSC), Vol. 24, No. 46 ( 2022), p. 28213-28221
    Abstract: To understand the crystallization of aqueous solutions in the atmosphere, biological specimens, or pharmaceutical formulations, the rate at which ice nucleates from pure liquid water must be quantified. There is still an orders-of-magnitude spread in the homogeneous nucleation rate of water measured using different instruments, with the most important source of uncertainty being that of the measured temperature. Microfluidic platforms can generate hundreds to thousands of monodisperse water-in-oil droplets, unachievable by most other techniques. However, most microfluidic devices previously used to quantify homogeneous ice nucleation rates have reported high temperature uncertainties, between ±0.3 and ±0.7 K. We use the recently developed Microfluidic Ice Nuclei Counter Zurich (MINCZ) to observe the freezing of spherical water droplets with two diameters (75 and 100 μm) at two cooling rates (1 and 0.1 K min −1 ). By varying both droplet volume and cooling rate, we were able to probe a temperature range of 236.5–239.3 K with an accuracy of ±0.2 K, providing reliable data where previously determined nucleation rates suffered from large uncertainties and inconsistencies, especially at temperatures above 238 K. From these data and from Monte Carlo simulations, we demonstrate the importance of obtaining a sufficiently large dataset so that underlying nucleation rates are not overestimated at higher temperatures. Finally, we obtain new parameters for a previous parameterisation by fitting to our newly measured nucleation rates, enabling its use in applications where ice formation needs to be predicted.
    Type of Medium: Online Resource
    ISSN: 1463-9076 , 1463-9084
    Language: English
    Publisher: Royal Society of Chemistry (RSC)
    Publication Date: 2022
    detail.hit.zdb_id: 1476283-3
    detail.hit.zdb_id: 1476244-4
    detail.hit.zdb_id: 1460656-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    American Meteorological Society ; 2023
    In:  Journal of Climate Vol. 36, No. 8 ( 2023-04-15), p. 2515-2533
    In: Journal of Climate, American Meteorological Society, Vol. 36, No. 8 ( 2023-04-15), p. 2515-2533
    Abstract: Tropical cyclones are among the most devastating natural phenomena that can cause severe damage when undergoing landfall. In the wake of the poorly forecast 2013 North Atlantic hurricane season, Rossby wave breaking on the 350-K isentropic surface has been linked to tropical cyclone activity measured by the accumulated cyclone energy (ACE). Here, ERA5 data and HURDAT2 tropical cyclone data are used to argue that the latitude of the 2 potential vorticity unit (PVU; 1 PVU = 10 −6 K kg −1 m 2 s −1 ) contour on the 360-K isentropic surface in the western North Atlantic is linked to changes in vertical wind shear and relative humidity during the month of September. A more equatorward position of the 2-PVU contour is shown to be linked to an increase in vertical wind shear and a reduction in relative humidity, as manifested in an increased ventilation index, in the tropical western North Atlantic during September. The more equatorward position is further linked to a reduction in the number of named storms, storm and hurricane days, hurricane lifetime, and number of tropical cyclones making landfall. Changes in genesis location are shown to be of importance for the changes in landfall frequency and hurricane lifetime. In summary, the 2-PVU contour latitude in the western North Atlantic can, therefore, potentially be used as a predictor in seasonal and subseasonal forecasting. Significance Statement Forecasts for the North Atlantic hurricane season are operationally produced. Their aim is to predict the number of tropical cyclones and their total energy throughout the season. This study proposes to include the tropopause latitude in these forecasts, as it is shown to be linked to vertical wind shear and midtropospheric relative humidity in the western tropical North Atlantic. The tropopause latitude is thereby linked to the number of tropical cyclones, their lifetime, and the total energy throughout the season. This link is particularly strong during September.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2023
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    American Meteorological Society ; 2020
    In:  Journal of Climate Vol. 33, No. 22 ( 2020-11-15), p. 9615-9628
    In: Journal of Climate, American Meteorological Society, Vol. 33, No. 22 ( 2020-11-15), p. 9615-9628
    Abstract: The Arctic is known to be particularly sensitive to climate change. This Arctic amplification has partially been attributed to poleward atmospheric heat transport in the form of airmass intrusions. Locally, such airmass intrusions can introduce moisture and temperature perturbations. The effect of airmass perturbations on boundary layer and cloud changes and their impact on the surface radiative balance has received increased attention, especially over sea ice with regard to sea ice melt. Utilizing cloud-resolving model simulations, this study addresses the impact of airmass perturbations occurring at different altitudes on stratocumulus clouds for open-ocean conditions. It is shown that warm and moist airmass perturbations substantially affect the boundary layer and cloud properties, even for the relatively moist environmental conditions over the open ocean. The cloud response is driven by temperature inversion adjustments and strongly depends on the perturbation height. Boundary layer perturbations weaken and raise the inversion, which destabilizes the lower troposphere and involves a transition from stratocumulus to cumulus clouds. In contrast, perturbations occurring in the lower free troposphere lead to a lowering but strengthening of the temperature inversion, with no impact on cloud fraction. In simulations where free-tropospheric specific humidity is further increased, multilayer mixed-phase clouds form. Regarding energy balance changes, substantial surface longwave cooling arises out of the stratocumulus break-up simulated for boundary layer perturbations. Meanwhile, the net surface longwave warming increases resulting from thicker clouds for airmass perturbations occurring in the lower free troposphere.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2020
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2023
    In:  npj Climate and Atmospheric Science Vol. 6, No. 1 ( 2023-08-29)
    In: npj Climate and Atmospheric Science, Springer Science and Business Media LLC, Vol. 6, No. 1 ( 2023-08-29)
    Abstract: A large fraction of the uncertainty around future global warming is due to the cooling effect of aerosol-liquid cloud interactions, and in particular to the elusive sign of liquid water path (LWP) adjustments to aerosol perturbations. To quantify this adjustment, we propose a causal approach that combines physical knowledge in the form of a causal graph with geostationary satellite observations of stratocumulus clouds. This allows us to remove confounding influences from large-scale meteorology and to disentangle counteracting physical processes (cloud-top entrainment enhancement and precipitation suppression due to aerosol perturbations) on different timescales. This results in weak LWP adjustments that are time-dependent (first positive then negative) and meteorological regime-dependent. More importantly, the causal approach reveals that failing to account for covariations of cloud droplet sizes and cloud depth, which are, respectively, a mediator and a confounder of entrainment and precipitation influences, leads to an overly negative aerosol-induced LWP response. This would result in an underestimation of the cooling influence of aerosol-cloud interactions.
    Type of Medium: Online Resource
    ISSN: 2397-3722
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2023
    detail.hit.zdb_id: 2925628-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Elsevier BV ; 2021
    In:  Journal of Biological Chemistry Vol. 296 ( 2021-01), p. 100136-
    In: Journal of Biological Chemistry, Elsevier BV, Vol. 296 ( 2021-01), p. 100136-
    Type of Medium: Online Resource
    ISSN: 0021-9258
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2021
    detail.hit.zdb_id: 2141744-1
    detail.hit.zdb_id: 1474604-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...