GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AGU (American Geophysical Union)  (8)
  • 2020-2024
  • 1995-1999  (8)
Document type
Years
Year
  • 1
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Oceans, 100 (C12). pp. 24745-24760.
    Publication Date: 2017-12-06
    Description: During March 1994 a survey of the western boundary of the tropical Atlantic, between 10 degrees N and 10 degrees S, was carried out by conductivity-temperature-depth and current profiling using shipboard and lowered acoustic Doppler current profilers. In the near-surface layer, above sigma. = 24.5, the inflow into the boundary regime came dominantly from low latitudes; out of the 14 Sv that crossed the equator in the upper part of the North Brazil Current (NBC), only 2 Sv originated from south of 5 degrees S, while 12 Sv came in from the east at 1 degrees-5 degrees S with the South Equatorial Current (SEC). After crossing the equator near 44 degrees W, only a minor fraction of the near-surface NBC retroflected eastward, while a net through flow of about 12 Sv above sigma. = 24.5 continued northwestward along the boundary, By contrast, in the isopycnal range sigma. = 24.5-26.8 encompassing the Equatorial Undercurrent (EUC), the source waters of the equatorial circulation were dominantly of higher-latitude South Atlantic origin. While only 3 Sv of eastern equatorial water entered the region through the SEC at 3 degrees-5 degrees S, there was an inflow of 10 Sv of South Atlantic water in the North Brazil Undercurrent (NBUC) along the South American coast that originated south of 10 degrees S, The transport of 14 Sv arriving at the equator along the boundary in the undercurrent layer was almost entirely retroflected into the EUC with only marginal northern water additions along its path to 35 degrees W. The off-equatorial undercurrents in the upper thermocline, the South and North Equatorial Undercurrents carried only small transports across 35 degrees W, of 5 Sv and 3 Sv, respectively, dominantly supplied out of SEC recirculation rather than out of the boundary current. Still deeper, three zonal undercurrents were observed: the westward-flowing Equatorial Intermediate Current (EIC) in the depth range 200-900 m below the EUC, and two off-equatorial eastward undercurrents, the Northern and Southern Intermediate Countercurrents (NICC, SICC) at 400-1000 m and 1 degrees-3 degrees latitude. In the lower part of the NBUC there was an Antarctic Intermediate Water (AAIW) inflow along the coast of 6 Sv, and there was a clear connection at the AAIW level to the SICC by low salinities and high oxygens and a weaker suggestion also that some supply of the NICC might be through AAIW out of the deep NBUC.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geophysical Research Letters, 24 (21). pp. 2565-2568.
    Publication Date: 2018-02-13
    Description: Preliminary results on the development of the northern Somali Current regime and Great Whirl during the summer monsoon of 1995 are reported. They are based on the water mass and current profiling observations from three shipboard surveys of R/V Meteor and on the time series from a moored current-meter and ADCP array. The monsoon response of the GW was deep-reaching, to more than 1000m. involving large deep transports. The northern Somali Current was found to be disconnected from the interior Arabian Sea in latitude range 4°N–12°N in both, water mass properties and current fields. Instead, communication dominantly occurs through the passages between Socotra and the African continent. From moored stations in the main passage a northward throughflow from the Somali Current to the Gulf of Aden of about 5 Sv was determined for the summer monsoon of 1995.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geophysical Research Letters, 24 (22). pp. 2805-2808.
    Publication Date: 2018-02-13
    Description: From geostrophic calculations the exchange of deep water from the Somali into the Arabian Basin through the Owen Fracture Zone has been estimated to be about 2 Sv, with a seasonal modulation of the same magnitude. After leaving the Fracture Zone, the flow bifurcates into a northern and a southern branch, each closely following the slope of the Carlsberg Ridge. The weaker vertical gradients of the hydrographic properties in the deep Arabian Basin are consistent with enhanced vertical mixing at the rugged topography over the Carlsberg Ridge.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Oceans, 101 (C2). pp. 3573-3587.
    Publication Date: 2019-08-29
    Description: From August 11 to 22, 1993, a conductivity‐temperature‐depth/acoustic Doppler current profiler survey was carried out in the Somali‐Socotra region to investigate currents and transports associated with the Great Whirl and Socotra Gyre circulation during the height of the summer monsoon. The monsoon circulation was confined to the upper 300 m depth, with intense surface currents up to 2.2 m s−1 in the Great Whirl and up to 1.4 m s−1 in the Socotra Gyre. Deeper‐reaching flow was found in the northwestern part of the Somali Basin and in the passage between the shelf of Somalia and Abd al Kuri. The Great Whirl transport was 58 Sv, of which nearly 25% were due to ageostrophic flow components. The northern part of the Great Whirl thereby appeared as a closed circulation cell in which the offshore transport was balanced by a southward transport of the same magnitude. Upwelled water was advected from the cold wedge of the upwelling regime at the Somali coast along the edge of the gyre. The water in the center of the gyre had the characteristics of Indian Equatorial Water (IEW). The Socotra Gyre carried 23 Sv of modified Arabian Sea Water (ASW). With the transports in the two anticyclonic gyres nearly balanced, the exchange of water masses between the Somali Basin, west of the Carlsberg Ridge, and the Arabian Sea occurred in two areas; about 16 Sv of warm and saline surface water of southern offshore origin entered the northern Somali Basin within a 120‐km‐wide swift current between the Great Whirl and the Socotra Gyre. The other key region for the exchange of water masses was the passage between Somalia and Abd al Kuri. There, the total northward transport was 13 Sv, with contributions of IEW, of upwelled water close to the surface, and ASW underneath.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Oceans, 100 (C9). pp. 18489-18502.
    Publication Date: 2018-04-27
    Description: The role of sea ice in preconditioning the mixed layers of the central Greenland Sea for deep convection is investigated, with particular emphasis on the formation of the “Nordbukta.” The opening of the ice free bay in late January 1989 indicated that the upper layer was well preconditioned for deep convection which reached down to 1500 m depth in March 1989. We propose that the ice free bay occurred due to diminishing new ice formation without extensive ice melt. A key process is wind‐driven ice drift to the southwest, as observed by upward looking acoustic Doppler current profilers, which will alter the upper ocean freshwater budget when an ice volume gradient along the ice‐drift direction exists. We investigated the importance and effects of such an ice‐drift‐induced freshwater loss on upper ocean properties using an ice‐ocean mixed‐layer model. Observed temperature and salt profiles from December 1988 served as initial conditions, and the model was integrated over the winter season. Given the one‐dimensional physics and climatological surface fluxes, the model was not able to produce a reasonable ice and mixed‐layer evolution. However, allowing ice drift to reduce the local ice thickness improved the ice‐ocean model performance dramatically. An average ice export of 5–8 mm d−1 was needed to be consistent with the observed evolution of mixed‐layer properties and ice cover. Using the same fluxes and ice export, but initial conditions from the “Is Odden” region, yielded ice cover throughout the winter over a shallow mixed layer, both of which are consistent with the observations from the Odden region.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Oceans, 104 (C7). 15,495-15,514.
    Publication Date: 2018-04-17
    Description: The zonal circulation south of Sri Lanka is an important link for the exchange of water between the Bay of Bengal and the Arabian Sea. Results from a first array of three moorings along 80 degrees 30'E north of 4 degrees 10'N from January .1991 to March 1992 were used to investigate the Monsoon Current regime [Schott et al., 1994]. Measurements from a second array of six current meter moorings are presented here. This array was deployed along 80 degrees 30'E between 45'S and 5 degrees N from July 1993 to September 1994 to investigate the annual cycle and interannual variability of the equatorial currents at this longitude. Both sets of moorings contribute to the Indian Ocean current meter array ICM8 of the World Ocean Circulation Experiment. The semiannual equatorial jet (EJ) was showing a large seasonal asymmetry, reaching a monthly mean eastward transport of 35 Sv (1 Sv = 1 x 10(6) m(3) s(-1)) in November 1993, but just 5 Sv in May 1994. The Equatorial Undercurrent (EUC) had a maximum transport of 17 Sv in March to April 1994. Unexpectedly, compared to previous observations and model studies, the EUC was reappearing again in August 1994 at more than 10 Sv transport and was still flowing when the moorings were recovered. In addition, monthly mean ship drifts near the equator are evaluated to support the interpretation of the moored observations. Interannual variability of the EJ in our measurements and ship drift data appears to be related to the variability of the zonal winds and Southern Oscillation Index. The output of a global numerical model (Parallel Ocean Climate Model) driven by the winds for 1993/1994 is used to connect our observations to the larger scale. The model reproduces the EJ asymmetry and shows the existence of the EUC and its reappearance during summer 1994.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Oceans, 102 (C13). 27,751-27,769.
    Publication Date: 2018-04-30
    Description: A total of 21 about year‐long current meter records in the depth range of the upper and middle North Atlantic Deep Water (NADW) were analyzed to determine the mean and the fluctuations of the upper Deep Western Boundary Current (DWBC) in the equatorial Atlantic. The investigation was based on moored arrays at 44°W from three different deployment periods, 1989/1990, 1990/1991 and 1992/1994, and was supplemented by current profiling along 44°W and 35°W. The approximately 100‐km‐wide DWBC at 44°W, just north of the equator, was attached to the topography with the current maximum exceeding 70 cm s−1. Currents within the DWBC core followed the topography, and the close agreement between the mean current direction and the direction of maximum variance indicated that the major contribution to the DWBC variability near the equator was due to pulsing rather than meandering. For mean transports of upper and middle NADW, the current meter records were averaged over their deployment duration yielding a best estimate of 13 Sv in the depth range 1000 to 3100 m. The mean transport appeared robust, as subsets of the data from two different years yielded about the same mean transport, namely, 12.4 and 13.6 Sv. The DWBC transport time series showed a definite seasonal cycle, ranging from less than 7 Sv during September/October to about 25 Sv during January/February. Annual and semiannual transport harmonics had similar amplitudes, at about 6 Sv each, and together they explained about two thirds of the total transport variability. After crossing the equator, the DWBC splits into two cores with the major flow along a chain of seamounts near 3.5°S, near 35°W. Magnitudes and phases of the transport variability at 35°W, south of approximately 1.5°S, were similar to that at 44°W. Further, for the flow of lower NADW which was detached from the upper DWBC core, similar periodicity and phases were observed in the deep records at 44°W.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geophysical Research Letters, 26 (3). pp. 369-372.
    Publication Date: 2018-02-13
    Description: The Charlie Gibbs Fracture Zone (CGFZ), a passage of 3600 m sill depth through the Mid‐Atlantic Ridge near 52°N, is a known gateway for the passage of deep waters from the Northeast Atlantic into the western basin. During a shipboard survey of August 1997 deep current profiling yielded eastward deep flow through the passage while geostrophy calculated against an intermediate reference level resulted in westward relative deep transport. The reason was an unusual and deep‐reaching northward excursion of the North Atlantic Current (NAC). Inspection of historical data showed that such interference of the NAC with the CGFZ regime occured occasionally in the past. Relocation of surface circulation patterns by decadal ocean‐climate anomalies may thus be of significance also for the deep circulation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...