GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2024  (19)
  • 2015-2019  (22)
Document type
Keywords
Language
Years
Year
  • 1
    Publication Date: 2019-02-01
    Description: The Early Eocene Climate Optimum (EECO, which occurred about 51 to 53 million years ago)1, was the warmest interval of the past 65 million years, with mean annual surface air temperature over ten degrees Celsius warmer than during the pre-industrial period2,3,4. Subsequent global cooling in the middle and late Eocene epoch, especially at high latitudes, eventually led to continental ice sheet development in Antarctica in the early Oligocene epoch (about 33.6 million years ago). However, existing estimates place atmospheric carbon dioxide (CO2) levels during the Eocene at 500–3,000 parts per million5,6,7, and in the absence of tighter constraints carbon–climate interactions over this interval remain uncertain. Here we use recent analytical and methodological developments8,9,10,11 to generate a new high-fidelity record of CO2 concentrations using the boron isotope (δ11B) composition of well preserved planktonic foraminifera from the Tanzania Drilling Project, revising previous estimates6. Although species-level uncertainties make absolute values difficult to constrain, CO2 concentrations during the EECO were around 1,400 parts per million. The relative decline in CO2 concentration through the Eocene is more robustly constrained at about fifty per cent, with a further decline into the Oligocene12. Provided the latitudinal dependency of sea surface temperature change for a given climate forcing in the Eocene was similar to that of the late Quaternary period13, this CO2 decline was sufficient to drive the well documented high- and low-latitude cooling that occurred through the Eocene14. Once the change in global temperature between the pre-industrial period and the Eocene caused by the action of all known slow feedbacks (apart from those associated with the carbon cycle) is removed2,3,4, both the EECO and the late Eocene exhibit an equilibrium climate sensitivity relative to the pre-industrial period of 2.1 to 4.6 degrees Celsius per CO2 doubling (66 per cent confidence), which is similar to the canonical range (1.5 to 4.5 degrees Celsius15), indicating that a large fraction of the warmth of the early Eocene greenhouse was driven by increased CO2 concentrations, and that climate sensitivity was relatively constant throughout this period.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-02-08
    Description: Accurate estimates of past global mean surface temperature (GMST) help to contextualise future climate change and are required to estimate the sensitivity of the climate system to CO2 forcing through Earth's history. Previous GMST estimates for the latest Paleocene and early Eocene (∼57 to 48 million years ago) span a wide range (∼9 to 23 ∘C higher than pre-industrial) and prevent an accurate assessment of climate sensitivity during this extreme greenhouse climate interval. Using the most recent data compilations, we employ a multi-method experimental framework to calculate GMST during the three DeepMIP target intervals: (1) the latest Paleocene (∼57 Ma), (2) the Paleocene–Eocene Thermal Maximum (PETM; 56 Ma), and (3) the early Eocene Climatic Optimum (EECO; 53.3 to 49.1 Ma). Using six different methodologies, we find that the average GMST estimate (66 % confidence) during the latest Paleocene, PETM, and EECO was 26.3 ∘C (22.3 to 28.3 ∘C), 31.6 ∘C (27.2 to 34.5 ∘C), and 27.0 ∘C (23.2 to 29.7 ∘C), respectively. GMST estimates from the EECO are ∼10 to 16 ∘C warmer than pre-industrial, higher than the estimate given by the Intergovernmental Panel on Climate Change (IPCC) 5th Assessment Report (9 to 14 ∘C higher than pre-industrial). Leveraging the large “signal” associated with these extreme warm climates, we combine estimates of GMST and CO2 from the latest Paleocene, PETM, and EECO to calculate gross estimates of the average climate sensitivity between the early Paleogene and today. We demonstrate that “bulk” equilibrium climate sensitivity (ECS; 66 % confidence) during the latest Paleocene, PETM, and EECO is 4.5 ∘C (2.4 to 6.8 ∘C), 3.6 ∘C (2.3 to 4.7 ∘C), and 3.1 ∘C (1.8 to 4.4 ∘C) per doubling of CO2. These values are generally similar to those assessed by the IPCC (1.5 to 4.5 ∘C per doubling CO2) but appear incompatible with low ECS values (〈1.5 per doubling CO2).
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-03-29
    Description: Sphagnum moss is the dominant plant type inmodern boreal and (sub)arctic ombrotrophic bogs and is of particular interest due to its sensitivity to climate and its important role in wetland biogeochemistry. Here we reconstruct the occurrence of Sphagnum moss – and associated biogeochemical change – within a thermally immature, early Paleogene (~55 Ma) lignite from Schöningen, NW Germany using a high-resolution, multi-proxy approach. Changes in the abundance of Sphagnum-type spores and the C23/C31 n-alkane ratio indicate the expansion of Sphagnum moss within the top of the lignite seam. This Sphagnum moss expansion is associated with the development of waterlogged conditions, analogous to what has been observed within modern ombrotrophic bogs. The similarity between biomarkers and palynology also indicates that the C23/C31 n-alkane ratio may be a reliable chemotaxonomic indicator for Sphagnum during the early Paleogene. The δ13C value of bacterial hopanes and mid-chain n-alkanes indicates that a rise in water table is not associated with a substantial increase in aerobic methanotrophy. The absence of very low δ13C values within the top of the seam could reflect either less methanogenesis or less efficient methane oxidation under waterlogged sulphate-rich conditions.
    Keywords: Paleocene; Eocene; bryophyte; Sphagnum bog ; 551
    Language: English
    Type: article , publishedVersion
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-03-28
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Badger, M. P. S., Chalk, T. B., Foster, G. L., Bown, P. R., Gibbs, S. J., Sexton, P. F., Schmidt, D. N., Paelike, H., Mackensen, A., & Pancost, R. D.. Insensitivity of alkenone carbon isotopes to atmospheric CO2 at low to moderate CO2 levels. Climate of the Past, 15(2), (2019):539-554 doi:10.5194/cp-15-539-2019.
    Description: Atmospheric pCO2 is a critical component of the global carbon system and is considered to be the major control of Earth's past, present, and future climate. Accurate and precise reconstructions of its concentration through geological time are therefore crucial to our understanding of the Earth system. Ice core records document pCO2 for the past 800 kyr, but at no point during this interval were CO2 levels higher than today. Interpretation of older pCO2 has been hampered by discrepancies during some time intervals between two of the main ocean-based proxy methods used to reconstruct pCO2: the carbon isotope fractionation that occurs during photosynthesis as recorded by haptophyte biomarkers (alkenones) and the boron isotope composition (δ11B) of foraminifer shells. Here, we present alkenone and δ11B-based pCO2 reconstructions generated from the same samples from the Pliocene and across a Pleistocene glacial–interglacial cycle at Ocean Drilling Program (ODP) Site 999. We find a muted response to pCO2 in the alkenone record compared to contemporaneous ice core and δ11B records, suggesting caution in the interpretation of alkenone-based records at low pCO2 levels. This is possibly caused by the physiology of CO2 uptake in the haptophytes. Our new understanding resolves some of the inconsistencies between the proxies and highlights that caution may be required when interpreting alkenone-based reconstructions of pCO2.
    Description: This study used samples provided by the International Ocean Discovery Program (IODP). We thank Alex Hull and Gemma Bowler for laboratory work, Lisa Schönborn and Günter Meyer for technical assistance, Alison Kuhl and Ian Bull for research support, and Andy Milton at the University of Southampton for maintaining some of the mass spectrometers used in this study. This study was funded by NERC grant NE/H006273/1 to Richard D. Pancost, Daniela N. Schmidt and Gavin L. Foster (which supported Marcus P. S. Badger). We also acknowledge the ERC Award T-GRES and a Royal Society Wolfson Research Merit Award to Richard D. Pancost. Gavin L. Foster is also supported by a Royal Society Wolfson Research Merit Award. We thank Kirsty Edgar for comments on an early draft of the manuscript, the two anonymous reviewers of this submission, and reviewers through various rounds of review whose comments greatly improved the manuscript. We are grateful to Thomas Bauska for encouraging us to do better at referencing the ice core data, and John Jasper for discussion of the early days of the alkenone palaeobarometer.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-26
    Description: © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Proceedings of the National Academy of Sciences of the United States of America 114 (2017): 13114-13119, doi: 10.1073/pnas.1702143114.
    Description: During the Mid-Pleistocene Transition (MPT; 1,200–800 kya), Earth’s orbitally paced ice age cycles intensified, lengthened from ∼40,000 (∼40 ky) to ∼100 ky, and became distinctly asymmetrical. Testing hypotheses that implicate changing atmospheric CO2 levels as a driver of the MPT has proven difficult with available observations. Here, we use orbitally resolved, boron isotope CO2 data to show that the glacial to interglacial CO2 difference increased from ∼43 to ∼75 μatm across the MPT, mainly because of lower glacial CO2 levels. Through carbon cycle modeling, we attribute this decline primarily to the initiation of substantive dust-borne iron fertilization of the Southern Ocean during peak glacial stages. We also observe a twofold steepening of the relationship between sea level and CO2-related climate forcing that is suggestive of a change in the dynamics that govern ice sheet stability, such as that expected from the removal of subglacial regolith or interhemispheric ice sheet phase-locking. We argue that neither ice sheet dynamics nor CO2 change in isolation can explain the MPT. Instead, we infer that the MPT was initiated by a change in ice sheet dynamics and that longer and deeper post-MPT ice ages were sustained by carbon cycle feedbacks related to dust fertilization of the Southern Ocean as a consequence of larger ice sheets.
    Description: Research was supported by National Environmental Research Council (NERC) Studentship NE/I528626/1 (to T.B.C.); NERC Grant NE/P011381/1 (to T.B.C., M.P.H., G.L.F., E.J.R., and P.A.W.); NERC Fellowships NE/K00901X/1 (to M.P.H.), NE/I006346/1 (to G.L.F. and R.D.P), and NE/H006273/1 (to R.D.P.); Royal Society Wolfson Awards (to G.L.F. and P.A.W.); Australian Research Council Laureate Fellowship FL1201000050 (to E.J.R.); Swiss National Science Foundation Grant PP00P2-144811 (to S.L.J.); ETH Research Grant ETH-04 11-1 (to S.L.J.); European Research Council Consolidator Grant (ERC CoG) Grant 617462 (to H.P.); and NERC UK IODP Grant NE/F00141X/1 (to P.A.W.).
    Keywords: Boron isotopes ; MPT ; Geochemistry ; Carbon dioxide ; Paleoclimate
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-03-14
    Description: A high-resolution carbonate C-isotope (δ13Ccarb) stratigraphy for the Aptian is presented for the Cau core from Alicante, Spain. The studied succession, lower to upper Aptian, embraces the record of the Early Aptian OAE 1a. The data provided includes δ13Ccarb, δ18O isotopes, Total Organic Carbon (TOC) and CaCO3. Four overlapping cores (D1 to D4) were drilled with an almost 100% recovery of a total (corrected for dip) thickness of 143 m. The cores were split in two parts. One half was described, photographed and scanned, and then sampled with a drill to obtain powdered samples for geochemical analyses. Also, small solid samples were taken from the drill for biostratigraphic characterization of the nannofossil and planktonic foraminifera associations. Second half was stored for archive and future research.
    Keywords: Almadich formation; Aptian; Automatic calcimeter (DREAM Électronique SAS , Pessac, France); Calcium carbonate; C and O isotopes; Carbon, organic, total; Cau_Core-D1; Cau_Core-D2; Cau_Core-D3; Cau_Core-D4; Cau-core; CO3Ca; DEPTH, sediment/rock; Event label; Hemipelagic sedimentation; Mass spectrometer, Finnigan, MAT 253; coupled with Carbonate preparation device, Finnigan, KIEL IV; OAE 1a; RDC; Rock drill core; Sample ID; Shimadzu TOC-V CSH total organic carbon analyzer; TOC; δ13C; δ18O
    Type: Dataset
    Format: text/tab-separated-values, 3121 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-03-14
    Description: This is the archaeal biomarker dataset for global peatlands. The first dataset contains biomarker data for each individual sample as for many peatlands we analysed more than one sample. The second dataset contains the averaged data for isoGDGT isomers in all sites that contains both associated pH and temperature measurements.
    Keywords: Archaea; Area/locality; BDGTs; biogeochemistry; Country; crenarchaeol; ELEVATION; GDGTs; Index; isomers; Isoprenoid glycerol dialkyl glycerol tetraether; LATITUDE; LONGITUDE; Me-GDGTs; pH; Temperature; Temperature, annual mean; wetlands
    Type: Dataset
    Format: text/tab-separated-values, 825 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-03-14
    Description: This is the archaeal GDGT dataset for global peatlands. The first dataset contains biomarker data for each individual sample as for many peatlands we analysed more than one sample. The second dataset contains the averaged data for isoGDGT isomers in all sites that contains both associated pH and temperature measurements. Other biomarker data for these samples can be found here: https://doi.pangaea.de/10.1594/PANGAEA.883763
    Keywords: Archaea; Area/locality; BDGTs; biogeochemistry; Country; crenarchaeol; Crenarchaeol, fractional abundance; Crenarchaeol (peak area); Crenarchaeol isomer, fractional abundance; Crenarchaeol isomer (peak area); Depth, description; GDGTs; Index; isomers; Isoprenoid acyclic glycerol dialkyl glycerol tetraether, fractional abundance; Isoprenoid dicyclic glycerol dialkyl glycerol tetraether, fractional abundance; Isoprenoid glycerol dialkyl glycerol tetraether, 5, fractional abundance; Isoprenoid glycerol dialkyl glycerol tetraether, 5 (peak area); Isoprenoid monocyclic glycerol dialkyl glycerol tetraether, fractional abundance; Isoprenoid tricyclic glycerol dialkyl glycerol tetraether, fractional abundance; Me-GDGTs; pH; pH, standard deviation; Temperature; Temperature, annual mean; Temperature, coldest month; Temperature, warmest month; wetlands
    Type: Dataset
    Format: text/tab-separated-values, 9870 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-06-27
    Keywords: 165-999A; AGE; Caribbean Sea; DEPTH, sediment/rock; DRILL; Drilling/drill rig; Joides Resolution; Leg165; Noelaerhabdaceae, length; Sample code/label
    Type: Dataset
    Format: text/tab-separated-values, 2754 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...