GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2023  (2)
Document type
Years
Year
  • 1
    Publication Date: 2022-08-16
    Description: With the increase in computational power, ocean models with kilometer-scale resolution have emerged over the last decade. These models have been used for quantifying the energetic exchanges between spatial scales, informing the design of eddy parametrizations, and preparing observing networks. The increase in resolution, however, has drastically increased the size of model outputs, making it difficult to transfer and analyze the data. It remains, nonetheless, of primary importance to assess more systematically the realism of these models. Here, we showcase a cloud-based analysis framework proposed by the Pangeo project that aims to tackle such distribution and analysis challenges. We analyze the output of eight submesoscale-permitting simulations, all on the cloud, for a crossover region of the upcoming Surface Water and Ocean Topography (SWOT) altimeter mission near the Gulf Stream separation. The cloud-based analysis framework (i) minimizes the cost of duplicating and storing ghost copies of data and (ii) allows for seamless sharing of analysis results amongst collaborators. We describe the framework and provide example analyses (e.g., sea-surface height variability, submesoscale vertical buoyancy fluxes, and comparison to predictions from the mixed-layer instability parametrization). Basin- to global-scale, submesoscale-permitting models are still at their early stage of development; their cost and carbon footprints are also rather large. It would, therefore, benefit the community to document the different model configurations for future best practices. We also argue that an emphasis on data analysis strategies would be crucial for improving the models themselves.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-09-20
    Description: Marine scientists investigate the movement of oceanic water particles with floating measurement devices released in the real ocean, as well as with virtual particles released in numerical model simulations. The detection, visualization, and evolution of clustered particles is key for gaining a comprehensive understanding of the underlying processes in the oceans. Thereby, vast amounts of mobility data (3D coordinates of these particles over time) need to be analyzed using mobility data science methods. In this paper, we describe the application of data science techniques to detect particle clusters and, more importantly, to track the evolution of these clusters over time in order to support the analysis of oceanic flows. In particular, we apply a well-known concept for tracking the cluster evolution from the data mining community that relies on pair-counting and, thus, is rather inefficient. In order to be applicable to large amounts of particles, we further elaborate two heuristic solutions to compute the cluster transitions based on spatial approximations. Experiments on real world data show a considerable speed-up while sacrificing marginal accuracy drops. Our prototype is used by domain experts for the analysis of the large-scale ocean by virtual particle release experiments in ocean simulations.
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...