GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2023  (2)
  • 1990-1994  (3)
Document type
Keywords
Language
Years
Year
  • 1
    ISSN: 1432-2056
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The lipid and fatty acid compositions of microalgae were investigated in sea-ice and water samples from six different habitats of the Weddell Sea (Antarctica). All sea-ice samples and ice-associated water contained high algal biomass dominated by centric and pennate diatoms. Cells partially filled with oil droplets and resting spores were found. In the cells from the ice platelet layer triacylglycerols formed the largest component of the lipids. The fatty acid composition of sea-ice microalgae was dominated by the 16:1(n-7), 16:0, 18:1(n-9) and 20:5 (n-3) fatty acids. Except 18:1, they are typical for diatom fatty acids. These fatty acids were most abundant in pieces of first year ice with a brown colouration (“brown-ice”) and in the water column directly below sea-ice (sub-ice water). The small amounts of non-diatom acids, as 22:6 (n-3) and 18:4 (n-3), clearly showed that the sea-ice communities were not purely composed of diatoms. The most striking difference, in comparison to the general fatty acid composition of diatoms, was the high proportion of the 18:1 fatty acid in all samples, which might be caused by detrital material or lipid accumulation within cells and resting spores. In general, no clear adaptation of the fatty acid composition to the Antarctic and sea-ice environment was found. The fatty acid composition of the particulate matter from the water column was totally different from all other samples dominated by the saturated fatty acids 16:0 and 18:0.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-10-05
    Description: Reconstructions of sea‐surface conditions during the Holocene were achieved using three sediment cores from northeastern Baffin Bay (GeoB19948‐3 and GeoB19927‐3) and the Labrador Sea (GeoB19905‐1) along a north–south transect based on sea‐ice IP25 and open‐water phytoplankton biomarkers (brassicasterol, dinosterol and HBI III). In Baffin Bay, sea‐surface conditions in the Early Holocene were characterized by extended (early) spring sea ice cover (SIC) prior to 7.6 ka BP. The conditions in the NE Labrador Sea, however, remained predominantly ice‐free in spring/autumn due to the enhanced influx of Atlantic Water (West Greenland Current, WGC) from 11.5 until ~9.1 ka BP, succeeded by a period of continued (spring–autumn) ice‐free conditions between 9.1 and 7.6 ka BP corresponding to the onset of Holocene Thermal Maximum (HTM)‐like conditions. A transition towards reoccurring ice‐edge and significantly reduced SIC conditions in Baffin Bay is evident in the Middle Holocene (~7.6–3 ka BP) probably caused by the variations in the WGC influence associated with the ice melting and can be characterized as HTM‐like conditions. These HTM‐like conditions are predominantly recorded in the NE Labrador Sea area shown by (spring–autumn) ice‐free conditions from 5.9–3 ka BP. In the Late Holocene (last ~3 ka), our combined proxy records from eastern Baffin Bay indicate low in‐situ ice algae production; however, enhanced multi‐year (drifted) sea ice in this area was possibly attributed to the increased influx of Polar Water mass influx and may correlate with the Neoglacial cooling. The conditions in the NE Labrador Sea during the last 3 ka, however, continued to remain (spring–autumn) ice‐free. Our data from the Baffin Bay–Labrador Sea transect suggest a dominant influence of meltwater influx on sea‐ice formation throughout the Holocene, in contrast to sea‐ice records from the Fram Strait area, which seem to follow predominantly the summer insolation trend.
    Description: image
    Description: Deutsche Forschungsgemeinschaft (DFG) http://dx.doi.org/10.13039/501100001659
    Keywords: ddc:551.46
    Language: English
    Type: doc-type:article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    In:  EPIC3Diplomarbeit, Universität Bremen
    Publication Date: 2019-07-16
    Repository Name: EPIC Alfred Wegener Institut
    Type: Thesis , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-16
    Description: The lipid and fatty acid compositions of microalgae were investigated in sea-ice and water samples from six different habitats of the Weddell Sea (Antarctica). All sea-ice samples and ice-associated water contained high algal biomass dominated by centric and and pennate diatoms. Cells partially filled with oil droplets and resting spores were found. In the cells from the ice platelet layer triacylglycerols formed the largest component of the lipids. The fatty acid composition of sea-ice microalgae was dominated by the 16:1(n-7), 16:0, 18:1(n-9) and 20:5(n-3) fatty acids. Except 18:1, they are typical for diatom fatty acids. These fatty acids were most abundant in pieces of first year ice with a brown colouration ("brown-ice") and in the water column directly below sea-ice (sub-ice water). The small amounts of non-diatom fatty acids, as 22:6(n-3) and 18:4(n-3), clearly showed that the sea-ice communities were not purely composed of diatoms. The most striking difference, in comparison to the general fatty acid composition of diatoms, was the high proportion of the 18:1 fatty acid in all samples, which might be caused by detrital material or lipid accumulation within cells and resting spores. In general, no clear adaptation of the fatty acid composition to the Antarctic and sea-ice environment was found. The fatty acid composition of the particulate matter from the water column was totally different from all other samples dominated by the saturated fatty acids 16:0 and 18:0.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-02-15
    Description: Reconstructions of sea-surface conditions during the Holocene were achieved using three sediment cores from northeastern Baffin Bay (GeoB19948-3 and GeoB19927-3) and the Labrador Sea (GeoB19905-1) along a north– south transect based on sea-ice IP25 and open-water phytoplankton biomarkers (brassicasterol, dinosterol and HBI III). In Baffin Bay, sea-surface conditions in the Early Holocene were characterized by extended (early) spring sea ice cover (SIC) prior to 7.6 ka BP. The conditions in the NE Labrador Sea, however, remained predominantly ice-free in spring/autumn due to the enhanced influx of Atlantic Water (West Greenland Current,WGC) from11.5 until ~9.1 ka BP, succeeded by a period of continued (spring–autumn) ice-free conditions between 9.1 and 7.6 ka BP corresponding to the onset of Holocene Thermal Maximum (HTM)-like conditions. A transition towards reoccurring ice-edge and significantly reduced SIC conditions in Baffin Bay is evident in the Middle Holocene (~7.6–3 ka BP) probably caused by the variations in the WGC influence associated with the ice melting and can be characterized as HTM-like conditions. These HTM-like conditions are predominantly recorded in the NE Labrador Sea area shown by (spring– autumn) ice-free conditions from 5.9–3 ka BP. In the Late Holocene (last ~3 ka), our combined proxy records from eastern Baffin Bay indicate low in-situ ice algae production; however, enhanced multi-year (drifted) sea ice in this area was possibly attributed to the increased influx of Polar Water mass influx and may correlate with the Neoglacial cooling. The conditions in the NE Labrador Sea during the last 3 ka, however, continued to remain (spring–autumn) ice-free. Our data from the Baffin Bay–Labrador Sea transect suggest a dominant influence of meltwater influx on sea ice formation throughout the Holocene, in contrast to sea-ice records from the Fram Strait area,which seem to follow predominantly the summer insolation trend.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...