GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • ASLO (Association for the Sciences of Limnology and Oceanography)  (3)
  • 2020-2023
  • 2000-2004  (3)
  • 1
    facet.materialart.
    Unknown
    ASLO (Association for the Sciences of Limnology and Oceanography)
    In:  Limnology and Oceanography, 45 (2). pp. 339-349.
    Publication Date: 2018-06-25
    Description: By factorial field experiments we analyzed the relative effects of increased nutrient (N+P) loading and natural grazing pressure on species composition, carbon storage, and nitrogen retention in the Baltic Sea littoral food web, composed of macroalgae, grazers (snails, isopods, amphipods), and predators (shrimps, crabs, fish). Nitrogen was depleted relative to phosphorus throughout most of the year. Increasing nitrogen (6–200% over ambient concentrations) enhanced algal productivity and cover of fast-growing annual algae, grazer, and predator densities, suggesting a three-level bottom-up effect. With increasing nitrogen loading, annual algae increasingly blocked perennial algal recruitment (65–98% decrease) and growth. Grazers counteracted the effects of nutrient enrichment on algal species composition through selective consumption of annual algae. Grazer exclusion had equivalent negative effects on perennial recruitment as a 85% increase in nitrogen loading. Nutrient enrichment increased algal nitrogen content and decreased tissue C: N ratios in spring and summer but not in fall. Carbon storage and nitrogen retention, measured as C and N retained in plant biomass at the end of the growth season, were increased by grazers (C: 39%, N: 24%) but decreased with increasing nitrogen loading (C: -71%, N: -74%). Our results emphasize the important role of grazers in buffering moderate eutrophication effects and illustrate how food web interactions and shifts in species composition are tightly linked to coastal ecosystem function
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    ASLO (Association for the Sciences of Limnology and Oceanography)
    In:  Limnology and Oceanography, 46 . pp. 749-757.
    Publication Date: 2018-06-25
    Description: In contrast to most pelagic primary producers, benthic macrophytes pass through morphologically distinct life stages, which can be subject to different ecological controls. Using factorial field experiments, we investigated how grazing pressure (three levels) and nutrient supply (four levels) interact in controlling the passage of marine macroalgae through an apparent recruitment bottleneck at the germling stage. In comparative experiments, we asked whether relative bottom-up and top-down effects on early life stages (〈4 week germlings) vary (1) between the eutrophic Baltic Sea and the oligotrophic NW Atlantic, (2) across seasons in the NW Atlantic, and (3) among annual and perennial macroalgae. In both systems nutrient enrichment favored and grazers suppressed recruitment of green and brown annual algae; however, enrichment effects were much more pronounced in the Baltic, whereas grazer effects dominated in the NW Atlantic. Grazers induced a shift from grazer-susceptible green to more resistant brown algae in the Baltic without reducing total germling density. In the NW Atlantic, grazers strongly reduced overall recruitment rate throughout all seasons. Effects on perennials were similar in both systems with moderate losses to grazing and no effects of nutrient enrichment. Recruit densities and species composition shifted with season in the NW Atlantic. We conclude that the relative effects of grazers and nutrient enrichment depended on the nutrient status of the system, algal life history strategy, and season. Strong bottom-up and top-down controls shape benthic community composition before macroalgae reach visible size
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    ASLO (Association for the Sciences of Limnology and Oceanography)
    In:  Limnology and Oceanography, 49 . pp. 1435-1445.
    Publication Date: 2019-09-23
    Description: Microzooplankton have received increased attention as an important trophic link between the microbial loop and calanoid copepods. On the basis of food size spectra overlap in some microzooplankton groups and calanoid copepods, however, such microzooplankton could function as competitors rather than as food for calanoid copepods (intraguild prey). Mixotrophic flagellates presumably represent a link between the microbial loop and the micro and mesozooplankton. We investigated the effects of microzooplankton and mixotrophy by altering the presence of a heterotrophic dinoflagellate and of a mixotrophic nanoflagellate in artificial food webs with calanoid copepods as terminal consumers. Overall system productivity was manipulated by two levels of nutrient enrichment. The heterotrophic dinoflagellate drastically reduced the nanophytoplankton and enhanced the reproduction of the copepods, suggesting that its role as a competitor is negligible compared to its function as a trophic link. In spite of the presence of heterotrophic nanoflagellates, the mixotroph had a strong negative effect on the picophytoplankton and (presumably) on bacterial biomass. At the same time, the mixotroph enhanced the atomic C:N ratio of the seston biomass, indicating a higher efficiency in overall primary production. Copepod reproduction was enhanced in the presence of the mixotrophic nanoflagellate. Results did not support predictions of the intraguild predation theory: The ratios of the intraguild predators and their preys were not affected by overall system productivity
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...