GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2022  (4)
Document type
Language
Years
Year
  • 1
    facet.materialart.
    Unknown
    JOHN WILEY & SONS LTD
    In:  EPIC3Permafrost and Periglacial Processes, JOHN WILEY & SONS LTD, 31(3), pp. 442-453, ISSN: 1045-6740
    Publication Date: 2020-08-16
    Description: Submarine permafrost is perennially cryotic earth material that lies offshore. Most submarine permafrost is relict terrestrial permafrost beneath the Arctic shelf seas, was inundated after the last glaciation, and has been warming and thawing ever since. As a reservoir and confining layer for gas hydrates, it has the potential to release greenhouse gasses and impact coastal infrastructure, but its distribution and rate of thaw are poorly constrained by observational data. Lengthening summers, reduced sea ice extent and increased solar heating will increase water temperatures and thaw rates. Observations of gas release from the East Siberian shelf and high methane concentrations in the water column and air above it have been attributed to flowpaths created in thawing permafrost. In this context, it is important to understand the distribution and state of submarine permafrost and how they are changing. We assemble recent and historical drilling data on regional submarine permafrost degradation rates and review recent studies that use modelling, geophysical mapping and geomorphology to characterize submarine permafrost. Implications for submarine permafrost thawing are discussed within the context of methane cycling in the Arctic Ocean and global climate change.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-01-19
    Description: This data set contains a first‐order estimate of distribution, thickness and ice-content of submarine permafrost on the Arctic shelf based on a numerical heat transfer model. Our model uses dynamic upper boundary conditions that synthesize Earth System Model air temperature, ice mass distribution and thickness, and global sea level reconstruction and applies globally distributed geothermal heat flux as a lower boundary condition. Sea level reconstruction accounts for differences between marine and terrestrial sedimentation history. Sediment composition and pore water salinity are integrated in the model. Model runs for 450 ka for cross‐shelf transects were used to initialize the model for circumarctic modeling for the past 50 ka.This data set consists of current sea levels, and permafrost depth [m below sea floor(m bsf)], total ice-content [m^2 / m^3] and enthalpy [MJ / m^2] at times 50ka, 25ka and 0a before industrialization for 15892 locations on the Arctic shelf. Additionally zonations for permafrost depth and ice-content are given as layer files. Based on the undertaken sensitivity studies zones with 〈100m permafrost are uncertain, zones with 100-300m are probable, and zones with 〉300m are confident.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Miscellaneous , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-08-30
    Description: The cover image is based on the Original Article* Recent Advances in the Study of Arctic Submarine Permafrost by Michael Angelopoulos** et al., https://doi.org/10.1002/ppp.2061.*** Source Credit: GRID‐Arendal; Overduin, et al. (2019); Obu, et al. (2019). This map was produced as part of the Nunataryuk project, which has received funding under the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement no. 773421.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Miscellaneous , notRev , info:eu-repo/semantics/other
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-10-28
    Description: Submarine permafrost is perennially cryotic earth material that lies offshore. Most submarine permafrost is relict terrestrial permafrost beneath the Arctic shelf seas, was inundated after the last glaciation, and has been warming and thawing ever since. As a reservoir and confining layer for gas hydrates, it has the potential to release greenhouse gasses and impact coastal infrastructure, but its distribution and rate of thaw are poorly constrained by observational data. Lengthening summers, reduced sea ice extent and increased solar heating will increase water temperatures and thaw rates. Observations of gas release from the East Siberian shelf and high methane concentrations in the water column and air above it have been attributed to flowpaths created in thawing permafrost. In this context, it is important to understand the distribution and state of submarine permafrost and how they are changing. We assemble recent and historical drilling data on regional submarine permafrost degradation rates and review recent studies that use modelling, geophysical mapping and geomorphology to characterize submarine permafrost. Implications for submarine permafrost thawing are discussed within the context of methane cycling in the Arctic Ocean and global climate change.
    Keywords: 551.38 ; Arctic ; offshore ; submarine permafrost ; subsea ; thaw rates
    Language: English
    Type: map
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...