GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2022  (7)
Document type
Publisher
Language
Year
  • 1
    Publication Date: 2021-08-17
    Description: Impingement of a hot buoyant mantle plume head on the lithosphere is one of the few scenarios that can initiate a new subduction zone without requiring any pre-existing weak zones. This mechanism can start subduction and plate tectonics on a stagnant lid and can also operate during active plate tectonics where plume-lithosphere interactions is likely to be affected by plate motion. In this study, we explore the influence of plate motion on lithospheric response to plume head-lithosphere interaction including the effect of magmatic weakening of lithosphere. Using 3d thermo-mechanical models we show that the arrival of a new plume beneath the lithosphere can either (1) break the lithosphere and initiate subduction, (2) penetrate the lithosphere without subduction initiation, or (3) spread asymmetrically below the lithosphere. Outcomes indicate that lithospheric strength and plume buoyancy control plume penetration through the lithosphere whereas the plate speed has a subordinate influence on this process. However, plate motion may affect the geometry and dynamics of plume-lithosphere interaction by promoting asymmetry in the subduction zone shape. When a sufficiently buoyant plume hits a young but subductable moving lithosphere, a single-slab modern-style subduction zone can form instead of multiple subduction zones predicted by stagnant lid models. In the case of subduction initiation of older moving oceanic lithosphere, asymmetrical cylindrical subduction is promoted instead of more symmetrical stagnant lid subduction. We propose that the eastward motion of the Farallon plate in Late Cretaceous time could have played a key role in forming one-sided subduction along the southern and western margin of the Caribbean and NW South America.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-02-12
    Description: The data are the numerical modeling results to investigate plume-induced subduction initation on which the figures of the paper "Plume-induced subduction initiation: single- or multi-slab subduction?" by Baes, Sobolev, Gerya and Brune are based. Detailed description on how they are obtained is given in that article (Baes et al., 2020). The naming of the files is based on the number of figures in the paper. Each zipped file contains input files (init.t3c and mode.t3c) and output files (*.vtr).
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-12-14
    Description: Initiation of subduction following the impingement of a hot buoyant mantle plume is one of the few scenarios that allow breaking the lithosphere and recycling a stagnant lid without requiring any preexisting weak zones. Here, we investigate factors controlling the number and shape of retreating subducting slabs formed by plume‐lithosphere interaction. Using 3‐D thermomechanical models we show that the deformation regime, which defines formation of single‐slab or multi‐slab subduction, depends on several parameters such as age of oceanic lithosphere, thickness of the crust and large‐scale lithospheric extension rate. Our model results indicate that on present‐day Earth multi‐slab plume‐induced subduction is initiated only if the oceanic lithosphere is relatively young (〈30–40 Myr, but 〉10 Myr), and the crust has a typical thickness of 8 km. In turn, development of single‐slab subduction is facilitated by older lithosphere and pre‐imposed extensional stresses. In early Earth, plume‐lithosphere interaction could have led to formation of either episodic short‐lived circular subduction when the oceanic lithosphere was young or to multi‐slab subduction when the lithosphere was old.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-12-14
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-07-10
    Description: This data publication is supplementary material to the paper " Subduction initiation by plume-plateau interaction: Insights from numerical models" (Baes et al., 2020). In this study, using 3-d numerical models, we explore the effect of relative distance of plume head and plateau edge, age of the lithosphere and strength of the lower crust on plume-induced subduction initiation. We use I3ELVIS code which solves the momentum, continuity and energy equations based on a staggered finite difference scheme combined with a marker-in-cell technique (Gerya, 2010; Gerya et al., 2015; Baes et al., 2016). Our numerical results show four different responses (shown in Figures 2-5 in the paper of Baes et al, 2020) that are: (a) oceanic trench formation, (b) circular plateau-oceanic trench formation, (c) plateau trench formation and (d) no trench formation. The results of models in which plume head is far away from the plateau edge are compatible with the outcomes of models with uniform lithospheres. The current data set contains the figures of five models representing five different deformation regimes (shown in Fig. 7 in the paper), which result from interaction of a plume with a homogenous lithosphere. Note that in all figures the upper panels show the logarithm of viscosity within the lithosphere. The middle and lower panels illustrate compositional field of a 2d cross-section cutting through center of model and surface topography, respectively. The color bars of temperature field and surface topography are shown at the top of the figure and colour code of compositional field is at bottom of the figure.
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    In:  Geochemistry Geophysics Geosystems (G3)
    Publication Date: 2020-12-14
    Description: Giant earthquakes with magnitudes above 8.5 occur only in subduction zones. Despite the developments made in observing large subduction zone earthquakes with geophysical instruments, the factors controlling the maximum size of these earthquakes are still poorly understood. Previous studies have suggested the importance of slab shape, roughness of the plate interface contact, state of the strain in the upper plate, thickness of sediments filling the trenches, and subduction rate. Here, we present 2‐D cross‐scale numerical models of seismic cycles for subduction zones with various geometries, subduction channel friction configurations, and subduction rates. We found that low‐angle subduction and thick sediments in the subduction channel are the necessary conditions for generating giant earthquakes, while the subduction rate has a negligible effect. We suggest that these key parameters determine the maximum magnitude of a subduction earthquake by controlling the seismogenic zone width and smoothness of the subduction interface. This interpretation supports previous studies that are based upon observations and scaling laws. Our modeling results also suggest that low static friction in the sediment‐filled subduction channel results in neutral or moderate compressive deformation in the overriding plate for low‐angle subduction zones hosting giant earthquakes. These modeling results agree well with observations for the largest earthquakes. Based on our models we predict maximum magnitudes of subduction earthquakes worldwide, demonstrating the fit to magnitudes of all giant earthquakes of the 20th and 21st centuries and good agreement with the predictions based on statistical analyses of observations.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-12-14
    Description: It has recently been demonstrated that the interaction of a mantle plume with sufficiently old oceanic lithosphere can initiate subduction. However, the existence of large lithospheric heterogeneities, such as a buoyant plateau, in proximity to a rising plume head may potentially hinder the formation of a new subduction zone. Here, we investigate this scenario by means of 3‐d numerical thermomechanical modeling. We explore how plume‐lithosphere interaction is affected by lithospheric age, relative location of plume head and plateau border as well as the strength of the oceanic crust. Our numerical experiments suggest four different geodynamic regimes: (a) oceanic trench formation, (b) circular oceanic‐plateau trench formation, (c) plateau trench formation, and (d) no trench formation. We show that regardless of the age and crustal strength of the oceanic lithosphere, subduction can be initiated when the plume head is either below the plateau border or at a distance less than the plume radius from the plateau edge. Crustal heterogeneity facilitates subduction initiation of old oceanic lithosphere. High crustal strength hampers the formation of a new subduction zone when the plume head is located below a young lithosphere containing a thick and strong plateau. We suggest that plume‐plateau interaction in the western margin of the Caribbean could have resulted in subduction initiation when the plume head impinged onto the oceanic lithosphere close to the border between plateau and oceanic crust.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...