GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2022  (9)
Document type
Years
Year
  • 1
    Publication Date: 2020-07-06
    Description: In this letter, we report on the design, development, and field operation of a surface-based multi-channel ultraw- ideband (UWB) ultrahigh frequency (UHF) radar to measure ice thickness, basal conditions, and ice-shelf bottom melt rates. The radar concept is based on the recent success in sounding shallow low-loss ice (∼1 km) and measuring the ice-shelf melt rates with a 600–900-MHz low-power radar, referred to as the accumulation radar. Our proposed radar system operates over the same frequency band, from 600 to 900 MHz, with a peak transmit power of 800 W. We used a large and lightweight 16 m × 17 m antenna array arranged in a Mills cross-configuration to obtain the required radar sensitivity to sound more than 3-km- thick ice and image the internal layers at a fine vertical resolution of about 60 cm. We used the system at the East Greenland Ice-coring Project (EGRIP) site in Summer 2018 to collect data over ∼100 km of lines. We sounded about 2.8-km-thick ice with more than 40-dB signal-to-noise ratio and mapped the internal layers to a depth of almost 2.5 km. Our results show that an airborne or spaceborne radar operating at frequencies as high as 900 MHz with a large antenna array can be used to map large ice sheets in Greenland and Antarctica.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  EPIC3IASC Workshop on the Dynamics; Mass Budget of Arctic Glaciers & the ASC Network on Arctic Glaciology Annual Meeting, 2020-01-28-2020-01-30
    Publication Date: 2020-04-20
    Description: In connection with the East Grip ice core drilling project airborne and groundbased multichannel radar systems were used to look in detail at the internal structures inside and outside of the Northeast Greenland Icestream. While the icestream margins surface expression is just delineated by slight depressions their internal structures are characterized by rather complicated multifold elements. These features hopefully can be used to better characterize the dynamics inherent in icestream systems.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    In:  EPIC380. Jahrestagung der Deutschen Geophysikalischen Gesellschaft, München, Germany, 2020-03-23-2020-03
    Publication Date: 2020-04-20
    Description: Ice streams are fast moving regions within the large ice sheets of Greenland and Antarctica. Recent developments of high resolution ice sounding radar systems for deployment from an aircraft or on the ground allow a detailed view of internal structures associated with the particular stress and strain fields related to the particular flow fields across the margins between slow and fast moving ice. Exemplary data will be shown from the margins of the North-East Greenland ice stream which were obtained in association with the EASTGRIP icecore drilling project.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-06-17
    Description: Radio echo sounding of polar ice sheets provides important information on the ice bed topography and internal layers. These data have been used by scientists to create 3D maps of polar ice sheets for climate modeling as well as to reconstruct the climate history that dates back to hundreds of thousands of years. In this paper, we present the design, and development of three surface-based multi-channel radars in the VHF and UHF bands. We provide results from radar data multi-frequency and polarization radar data collected over the Greenland ice sheet. All the three radars shared the same digital waveform generator and digitizer, and were installed in and operated on a tracked vehicle. The radars are operated with 3 different antenna arrays designed for operation over 170-230 MHz, 180-340 MHz and 600-900 MHz. The results we sounded more than 2.7 km thick ice with radars operating at frequencies as high as 850 MHz with more than 40 dB signal-to-noise ratio.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-05-11
    Description: The North East Greenland Ice Stream (NEGIS) is delineated by well-defined shear margins, which are evident in the gradient of surface velocity field as well as in the surface topography, where they form troughs up to ten meters deep. In the upper part of the ice stream the margins appear not to be linked to bedrock topography. To understand this efficient system of mass transport towards the ocean it is essential to investigate the nature of the shear margins, as here very localized deformation decouples the inner ice stream from the slower flowing surrounding ice sheet. This process is influenced by several factors and feedback mechanisms, including the crystal fabric orientation, strain heating and localization of meltwater. In summary, the shear margins are area-wise a small part of the ice stream itself, but the processes leading to the localization of deformation are of similar importance for ice discharge as the processes enabling fast flow of the main trunk over the bed. We present results from an airborne radar survey with the AWI Ultra-Wide Band Radar system, covering an area 150 km upstream and 100 km downstream of the deep drilling site on the ice stream (EGRIP). Over the survey area the ice stream accelerates from 12 m/a to 75 m/a. We focus on the signatures of the shear margins in the radar data. In the regions of localized shear, the internal reflections in the radargrams show disturbances in the form of steep undulations, or chevron folds, which are intensified with ongoing shear. As the ice stream has been covered with 36 flow-perpendicular radar sections we are able to show the evolution of these characteristic signatures over the survey area, and thus, as an analog, over time. 3D-representations of the folded stratigraphic layers reveal how new folds are formed when the ice stream widens and how older structures are preserved in the outer part of the main trunk, where they are no longer subject to shear. Furthermore, we link the change of the shape of the internal reflections in the shear zones to a strain rate field calculated from high resolution flow velocities derived by TerraSAR-X data.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-04-12
    Description: Crystal anisotropy of ice causes slight birefringence for electromagnetic waves. At the same time, the mechanical anisotropy amounts to several orders of magnitude, thus making fabric properties highly-relevant for internal deformation. To date, bulk anisotropy of glaciers and ice sheets can be determined by geophysical methods, such as polarimetric radar, or direct sampling from ice cores. A shortcoming has been so far that changes of bulk anisotropy could mainly be inferred at single point observations, but less so as continuous profiles. Here, we exploit the effect of birefringence caused by bulk anisotropy in co-polarized airborne radar data to determine the horizontal anisotropy across the North-East Greenland Ice Stream. We base our analysis on the fact that birefringence causes a second-order effect on radar amplitudes, which leads to a beat frequency in the low and medium frequency range (O(100 kHz)), which is proportional to the horizontal anisotropy. Complementing our radar analysis with direct fabric and dielectric property observations we can constrain the range of all three fabric eigenvalues as a function of space across and along the ice stream. Finally, we assess the effect of the inferred fabric distribution on the overall ice rheology in the context of ice stream dynamics and compare it with numerical model results. Our overall approach has the advantage that it can be applied to co-polarized radar systems, as commonly used in profiling surveys, and does not require dedicated cross-polarized radar set-up. This provides the opportunity to revisit older data, especially from Greenland and Antarctica, to map fabric anisotropy in ice-dynamically interesting regions.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-10-07
    Description: The landscape of Antarctica, hidden beneath kilometre-thick ice in most places, has been shaped by the interactions between tectonic and erosional processes. The flow dynamics of the thick ice cover deepened pre-formed topographic depressions by glacial erosion, but also preserved the subglacial landscapes in regions with moderate to slow ice flow. Mapping the spatial variability of these structures provides the basis for reconstruction of the evolution of subglacial morphology. This study focuses on the Jutulstraumen Glacier drainage system in Dronning Maud Land, East Antarctica. The Jutulstraumen Glacier reaches the ocean via the Jutulstraumen Graben, which is the only significant passage for draining the East Antarctic Ice Sheet through the western part of the Dronning Maud Land mountain chain. We acquired new bed topography data during an airborne radar campaign in the region upstream of the Jutulstraumen Graben to characterise the source area of the glacier. The new data show a deep relief to be generally under-represented in available bed topography compilations. Our analysis of the bed topography, valley characteristics and bed roughness leads to the conclusion that much more of the alpine landscape that would have formed prior to the Antarctic Ice Sheet is preserved than previously anticipated. We identify an active and deeply eroded U-shaped valley network next to largely preserved passive fluvial and glacial modified landscapes. Based on the landscape classification, we reconstruct the temporal sequence by which ice flow modified the topography since the beginning of the glaciation of Antarctica.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-08-23
    Description: The North East Greenland Ice Stream clearly stands out in the surface velocity field of the ice flow of Greenland, with its sharp and narrow shear margins visible in the flow field almost up to the central divide. While the current extent and strength of the streaming can be determined from remotely sensed velocities of the ice surface, it is less known how the ice stream is affecting the deeper layers of ice in its catchment area, and how it may have evolved over time. The deformation of the ice due to streaming can be made visible by mapping the distortion of the isochronous stratigraphy of the ice. This has been done by an airborne radar survey centering on the location of the EGRIP drilling camp, carried out with the ultra wide band radar system (AWI UWB). The dense grid of profiles arranged mainly perpendicular to the ice flow reveals the imprint that the strong shearing leaves within the layering of the ice. Although the layers are tightly folded and distorted within the shear zones, it is possible to continuously trace reflections within the upper half of the ice column throughout the entire survey area. It can be shown that the intensity of the folding is linked to the strain rate field derived from the surface velocities, and that the deformation history of the ice is preserved in the folded layers, even after it is no longer affected by high strain rates. The advection patterns of the mapped stratigraphic features reveal how the streaming of the ice and the resulting local changes of surface topography may have affected the inflow into the stream and the position of the shear margins over time.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-08-23
    Description: Crystal anisotropy of ice causes slight birefringence for electromagnetic waves. At the same time, the mechanical anisotropy amounts to several orders of magnitude, thus making fabric properties highly-relevant for internal deformation. To date, bulk anisotropy of glaciers and ice sheets can be determined by geophysical methods, such as polarimetric radar, or direct sampling from ice cores. A shortcoming has been so far that changes of bulk anisotropy could mainly be inferred at single point observations, but less so as continuous profiles. Here, we exploit the effect of birefringence caused by bulk anisotropy in co-polarized airborne radar data to determine the horizontal anisotropy across the North-East Greenland Ice Stream. We base our analysis on the fact that birefringence causes a second-order effect on radar amplitudes, which leads to a beat frequency in the low and medium frequency range (O(100 kHz)), which is proportional to the horizontal anisotropy. Complementing our radar analysis with direct fabric and dielectric property observations we can constrain the range of all three fabric eigenvalues as a function of space across and along the ice stream. Finally, we assess the effect of the inferred fabric distribution on the overall ice rheology in the context of ice stream dynamics. Our overall approach has the advantage that it can be applied to co-polarized radar systems, as commonly used in profiling surveys, and does not require dedicated cross-polarized radar set-up. This provides the opportunity to revisit older data, especially from Greenland and Antarctica, to map fabric anisotropy in ice-dynamically interesting regions.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...