GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2022  (5)
Document type
Publisher
Years
Year
  • 1
    Publication Date: 2020-02-14
    Description: Numerous studies have provided compelling evidence that the Pacific Ocean has experienced substantial glacial/interglacial changes in bottom-water oxygenation associated with enhanced carbon dioxide storage in the glacial deep ocean. Under postulated low glacial bottom-water oxygen concentrations (O2bw), redox zonation, biogeochemical processes and element fluxes in the sediments must have been distinctively different during the last glacial period (LGP) compared to current well-oxygenated conditions. In this study, we have investigated six sites situated in various European contract areas for the exploration of polymetallic nodules within the Clarion-Clipperton Zone (CCZ) in the NE Pacific and one site located in a protected Area of Particular Environmental Interest (APEI3) north of the CCZ. We found bulk sediment Mn maxima of up to 1 wt% in the upper oxic 10 cm of the sediments at all sites except for the APEI3 site. The application of a combined leaching protocol for the extraction of sedimentary Mn and Fe minerals revealed that mobilizable Mn(IV) represents the dominant Mn(oxyhydr)oxide phase with more than 70% of bulk solid-phase Mn. Steady state transport-reaction modeling showed that at postulated glacial O2bw of 35 µM, the oxic zone in the sediments was much more compressed than today where upward diffusing pore-water Mn2+ was oxidized and precipitated as authigenic Mn(IV) at the oxic-suboxic redox boundary in the upper 5 cm of the sediments. Transient transport-reaction modeling demonstrated that with increasing O2bw during the last glacial termination to current levels of ~ 150 µM, (1) the oxic-suboxic redox boundary migrated deeper into the sediments and (2) the authigenic Mn(IV) peak was continuously mixed into subsequently deposited sediments by bioturbation causing the observed mobilizable Mn(IV) enrichment in the surface sediments. Such a distinct mobilizable Mn(IV) maximum was not found in the surface sediments of the APEI3 site, which indicates that the oxic zone was not as condensed during the LGP at this site due to two- to threefold lower organic carbon burial rates. Leaching data for sedimentary Fe minerals suggest that Fe(III) has not been diagenetically redistributed during the LGP at any of the investigated sites. Our results demonstrate that the basin-wide deoxygenation in the NE Pacific during the LGP was associated with (1) a much more compressed oxic zone at sites with carbon burial fluxes higher than 1.5 mg Corg m-2 d-1, (2) the authigenic formation of a sub-surface mobilizable Mn(IV) maximum in the upper 5 cm of the sediments and (3) a possibly intensified suboxic-diagenetic growth of polymetallic nodules. As our study provides evidence that authigenic Mn(IV) precipitated in the surface sediments under postulated low glacial O2bw, it contributes to resolving a long-standing controversy concerning the origin of widely observed Mn-rich layers in glacial/deglacial deep-sea sediments.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-05-08
    Description: A number of studies have shown that iron reduction in marine sediments is not confined to sulfate- or sulfide-containing depths but may also affect deep methanic intervals. In particular dynamic depositional settings often show the release of dissolved iron below the sulphate-methane transition (SMT). The specific process behind this deep iron release is not well understood. It has been suggested that anaerobic oxidation of methane (AOM) mediated by Fe oxide reduction plays an important role. So there might be a close, so far unaccounted link between the Fe and C cycles in deep marine sediments. Here we present a compilation of inorganic geochemical data including δ56Fe values of pore water and reactive Fe fractions for sediments of the Helgoland mud area (North Sea) for which a coupling between deep iron reduction and AOM has been proposed [1]. The sediments show a shallow SMT and increasing dissolved Fe concentrations of up to 400 µM further below. High sedimentation rates led to a fast burial and preservation of reactive Fe (oxyhydr)oxides, enabling deep iron reduction as we observe it today. Isotopic fractionation of Fe has been demonstrated for DIR in culture experiments and in shallow marine sediments. Such studies build upon the principle that microbes preferentially utilize light Fe isotopes (54Fe) causing a fractionation between solid ferric and dissolved ferrous iron. For alternative biotic Fe reduction pathways in methanic environments, there are practically no data. We hypothesized that any microbially mediated iron reduction process would result in a similar preferential release of 54Fe and, thus, shift pore water δ56Fe towards negative values. Furthermore we hypothesized that the microbial utilization of a specific Fe (oxyhydr)oxide pool would result in a relative enrichment of 56Fe in the residual ferric substrate. Close to the sediment-water interface pore water δ56Fe in the mud area is generally negative and shows a downward trend towards positive values as it can be expected for in-situ dissimilatory iron reduction (DIR) [2]. The Fe isotope signal close to the sulfidic interval is ~1‰ heavier than above and below as Fe sulfide precipitation preferentially removes 54Fe from pore water. A pronounced downward shift of pore-water δ56Fe to more negative values within the methanic zone is a clear indication for microbial Fe reduction coupled to organic matter degradation. However, this shift does not coincide with the main interval of Fe release for which potential for Fe-AOM had been demonstrated [1]. In this deeper interval, the released Fe has an isotopic composition that matches that of the ferric substrates. We conclude that either 1) Fe-AOM plays a subordinate role for Fe release at depth or 2) does not go along with significant Fe isotope fractionation, which might be explained by different ways of electron transfer between microbe and the iron oxide compared to DIR. [1] Aromokeye, D. et al., 2019. Frontiers in Microbiology, doi: 10.3389/fmicb.2019.03041. [2] Henkel, S. et al., 2016. Chemical Geology 421: 93-102.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-02-25
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-10-01
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-10-18
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...