GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2022  (3)
  • 1
    Publication Date: 2021-07-26
    Description: We present new geochemical and isotopic data for rock samples from two island arc volcanoes, Erromango and Vulcan Seamount, and from a 500 m thick stratigraphic profile of lava flows exposed on the SW flank of Vate Trough back-arc rift of the New Hebrides Island Arc (NHIA). The basalts from the SW rift flank of Vate Trough have ages of ~0.5 Ma but are geochemically similar to those erupting along the active back-arc rift. The weak subduction component in the back-arc basalts implies formation by decompression melting during early rifting and rifting initiation by tectonic processes rather than by lithosphere weakening by arc magma. Melting beneath Vate Trough is probably caused by chemically heterogeneous and hot mantle that flows in from the North Fiji Basin in the east. The melting zone beneath Vate Trough back-arc is separate from that of the arc front, but a weak slab component suggests fluid transport from the slab. Immobile incompatible element ratios in South NHIA lavas overlap with those of the Vate Trough depleted back-arc basalts, suggesting that enriched mantle components are depleted by back-arc melting during mantle flow. The slab component varies from hydrous melts of subducted sediments in the Central NHIA to fluids from altered basalts in the South NHIA. The volcanism of Erromango shows constant compositions for 5 million years, that is, there is no sign for variable depletion of the mantle or for a change of slab components due to collision of the D'Entrecasteaux Ridge as in lava successions further north.
    Keywords: 551.9 ; subduction zone ; back-arc basalt ; sediment subduction
    Language: English
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-09-15
    Description: The Dom João de Castro seamount in the Hirondelle Basin (Azores) is a central volcano on the ultraslow diverging Terceira Rift axis. The combination of structural and geochemical data provides insights into the evolution of central volcanoes in oceanic rift systems above the Azores melting anomaly. The orientation of fault scarps and volcanic structures at D. João de Castro and the adjacent Castro fissure zone indicate that the regional SW‐NE extending stress field dominates the morphology of the NW Hirondelle Basin. The regional tectonic stress field controls the crustal melt pathways and leads to dike emplacement along fissure zones and the prevalent eruption of mafic lavas. The occurrence of mafic to felsic lavas at D. João de Castro gives evidence for both a deep and a shallow crustal melt reservoir generating a subordinate local stress field at the seamount. New Sr‐Nd‐Pb isotope data along with incompatible trace element ratios indicate that D. João de Castro and the Castro Ridges originated from similarly heterogeneous mantle source but did not form simultaneously. Our new model implies that central volcanoes along the Terceira Rift form by the growth of volcanic ridges and transitioned into circular edifices after magmatic systems generate local changes in the regional lithospheric stress field. The geometry of D. João de Castro and other magmatic systems along the Terceira Rift combined with the alkaline nature of the erupted lavas, and the large lithosphere thickness indicates that young oceanic rifts are more similar to continental rifts rather than mid‐ocean ridges.
    Description: Plain Language Summary: Dom João de Castro seamount is a large submarine volcano located in the submarine Hirondelle Basin in the Azores archipelago. The Hirondelle Basin is formed as a result of extensional forces in the oceanic crust along the Azorean Terceira Rift that causes rifting of the Eurasian and Nubian plates. The presence of the D. João de Castro volcano and several elongated volcanic ridges inside the basin shows that the extensive magmatic activity in the Azores contributes to the opening of the basin. By quantifying the orientations of the tectonic and volcanic structures in the basin, it can be shown that the formation is controlled by a dominant SW‐NE directed extensional stress combined with extensive magmatic activity. Based on combined structural and geochemical observations, we conclude that the D. João de Castro seamount formed from the growth of elongated volcanic ridges and transitioned into a circular edifice after a magma system generates a local change in the crustal stress field. The geometry and geochemical composition of volcanic rocks from the D. João de Castro magmatic system, as well as other magmatic systems along the Terceira Rift are more similar to continental rift systems rather than oceanic spreading centers.
    Description: Key Points: D. João de Castro seamount in the Terceira Rift, Azores is influenced by a SW‐NE regional transtensional and a local radiating stress field. Structural, seismic, and geochemical data imply formation by the growth of volcanic ridges along with local stress field changes. The geometry, chemistry, and rifting rates of the Terceira Rift are more comparable to continental rifts rather than mid‐ocean ridges.
    Description: Deutsche Forschungsgemeinschaft (DFG) http://dx.doi.org/10.13039/501100001659
    Keywords: 551 ; 559 ; Azores ; central volcano ; intraplate volcanism ; melt transport ; rifting ; Terceira Rift
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-12-14
    Description: We present new geochemical and isotopic data for rock samples from two island arc volcanoes, Erromango and Vulcan Seamount, and from a 500 m thick stratigraphic profile of lava flows exposed on the SW flank of Vate Trough back‐arc rift of the New Hebrides Island Arc (NHIA). The basalts from the SW rift flank of Vate Trough have ages of ~0.5 Ma but are geochemically similar to those erupting along the active back‐arc rift. The weak subduction component in the back‐arc basalts implies formation by decompression melting during early rifting and rifting initiation by tectonic processes rather than by lithosphere weakening by arc magma. Melting beneath Vate Trough is probably caused by chemically heterogeneous and hot mantle that flows in from the North Fiji Basin in the east. The melting zone beneath Vate Trough back‐arc is separate from that of the arc front, but a weak slab component suggests fluid transport from the slab. Immobile incompatible element ratios in South NHIA lavas overlap with those of the Vate Trough depleted back‐arc basalts, suggesting that enriched mantle components are depleted by back‐arc melting during mantle flow. The slab component varies from hydrous melts of subducted sediments in the Central NHIA to fluids from altered basalts in the South NHIA. The volcanism of Erromango shows constant compositions for 5 million years, that is, there is no sign for variable depletion of the mantle or for a change of slab components due to collision of the D'Entrecasteaux Ridge as in lava successions further north.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...