GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • ASLO (Association for the Sciences of Limnology and Oceanography)  (5)
  • 2020-2022
  • 1995-1999  (5)
  • 1
    facet.materialart.
    Unknown
    ASLO (Association for the Sciences of Limnology and Oceanography)
    In:  Limnology and Oceanography, 42 (7). pp. 1622-1628.
    Publication Date: 2018-06-25
    Description: Periphyton grazing by the marine isopod Idothea chelipes was studied by exposing periphyton grown on glass slides to a gradient of grazer densities. An analysis of the algal growth rates and their relationships to grazer density revealed two groups of algae. The unicellular diatoms Licmophora ehrenbergii, Fragilaria tabulata, Navicula spp., Cocconeis costata, and the green alga Ulothrix implexa had high maximal growth rates (0.90–1.47 d−1) and suffered high grazing losses (0.41–0.68 d−1 per grazer ind.). The tube dwelling diatom Amphipleura rutilans and the cyanobacteria Lyngbya confervoides and Spirulina subsalsa had low maximal growth rates (0.38–0.81 d−1) and suffered only moderate grazing losses (0.10–0.27 d−1 per grazer ind.). The species of the first group seemed to be less strongly resource limited than did the species of the second group. Grazing by I. chelipes has the potential to drive succession from the well‐edible to the less edible periphyton species.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    ASLO (Association for the Sciences of Limnology and Oceanography)
    In:  Limnology and Oceanography, 40 (7). pp. 1271-1277.
    Publication Date: 2018-06-25
    Description: I tested the extent to which differences in light supply could influence the outcome of nutrient (Si and N) competition between marine phytoplankton. Competition experiments were performed with 11 species of marine phytoplankton at Si: N ratios from 16 to 124 : 1, light intensities from 28 to 225 µmol quanta m−2 s−1, and three different daylengths. Thus, light supply was the composite result of two components: photoperiod and intensity. Diatoms were dominant competitors at higher Si: N ratios, nonsiliceous flagellates at lower ones. Light had no impact on the transition from flagellate to diatom dominance along the Si: N gradient. However, species within those groups were separated along the light gradient. Contrary to theoretical expectations, changes in light intensity and changes in daylength led to similar shifts in species dominance. Therefore, it was possible to describe the light climate by the integral parameter “daily light dose.”
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    ASLO (Association for the Sciences of Limnology and Oceanography)
    In:  Limnology and Oceanography, 43 (6). pp. 1393-1396.
    Publication Date: 2018-06-25
    Description: The food-chain transmission of mineral nutrient effects to zooplankton production via phytoplankton competition was studied by two-stage experiments with a mixed phytoplankton assemblage from the Indian Ocean and the rotifer species Brachionus plicatilis. Phytoplankton species composition was steered by nutrient competition in the first stage of the cultures. High atomic Si : N ratios (〉 1 : 1) in the medium resulted in diatom dominance, and low ones resulted in flagellate dominance. Medium Si : N ratios (0.3-0.6 : 1) resulted in even mixtures of both types of algae. The phytoplankton assemblage resulting from competition was used as food for Brachionus. An even mixture between diatoms and flagellates in the food resulted in higher Brachionus production than one sided food mixtures.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    ASLO (Association for the Sciences of Limnology and Oceanography)
    In:  Limnology and Oceanography, 44 . pp. 1114-1119.
    Publication Date: 2019-09-23
    Description: According to Connell�s intermediate disturbance hypothesis (IDH), diversity within a community is maximal at intermediate frequencies and intensities of disturbances. In order to test the IDH, disturbances of different frequencies and intensities were imposed on natural plankton communities in controlled field experiments. These disturbances consisted of an artificial deepening of the mixed layer, leading to the dilution of epilimnetic populations and to a higher level of nutrients. Intervals between disturbances ranged from 2 to 12 d. Different intensities of disturbance were caused by differences in the experimental mixing depth (150 and 225% of the original epilimnion depth). Investigation focused on the effect that disturbances had on the diversity of natural phytoplankton communities. Additionally, we were interested in determining the effect of grazing by zooplankton. The results of the field experiments show for the first time the applicability of the IDH to phytoplankton within complete planktonic communities. Diversity showed a clear maximum at the intermediate disturbance interval of 6 d. Similarly, species number peaked at intermediate interval length (6-10 d).
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    ASLO (Association for the Sciences of Limnology and Oceanography)
    In:  Limnology and Oceanography, 44 . pp. 440-446.
    Publication Date: 2018-06-25
    Description: Cellular nutrient ratios are often applied as indicators of nutrient limitation in phytoplankton studies, especially the so-called Redfield ratio. For periphyton, similar data are scarce. We investigated the changes in cellular C: N: P stoichiometry of benthic microalgae in response to different levels and types of nutrient limitation and a variety of abiotic conditions in laboratory experiments with natural inocula. C: N ratios increased with decreasing growth rate, irrespective of the limiting nutrient. At the highest growth rates, the C: N ratio ranged uniformly around 7.5. N: P ratios 〈13 indicated N limitation, while N: P ratios 〉22 indicated P limitation. Under P limitation, the C: P ratios increased at low growth rate and varied around 130 at highest growth rates. For a medium with balanced supply of N and P, an optimal stoichiometric ratio of C: N: P = 119 : 17 : 1 could be deduced for benthic microalgae, which is slightly higher than the Redfield ratio (106 : 16 : 1) considered typical for optimally growing phytoplankton. The optimal ratio was stable against changes in abiotic conditions. In conclusion, cellular nutrient ratios are proposed as an indicator for nutrient status in periphyton.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...