GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2024  (25)
  • 2023  (11)
  • 2021  (14)
Keywords
Language
Years
Year
  • 1
    Keywords: Forschungsbericht
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (62 Seiten, 18,41 MB) , Diagramme, Illustrationen, Karten
    Language: German
    Note: Literaturverzeichnis: Seite 54-60 , Förderkennzeichen BMBF 03F0824C , Verbundnummer 01184704 , Paralleltitel dem englischen Berichtsblatt entnommen , Unterschiede zwischen dem gedruckten Dokument und der elektronischen Ressource können nicht ausgeschlossen werden , Sprache der Zusammenfassungen: Deutsch, Englisch
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-11-14
    Description: Agulhas leakage, the warm and salty inflow of Indian Ocean water into the Atlantic Ocean, is of importance for the climate-relevant Atlantic Meridional Overturning Circulation. South of Africa, the eastward turning Agulhas Current sheds Agulhas rings, cyclones and filaments of order 100 km that carry the Indian Ocean water into the Cape Basin and further into the Atlantic. Here, we show that the resolution of submesoscale flows of order 10 km in an ocean model leads to 40 % more Agulhas leakage and more realistic Cape Basin water-masses compared to a parallel non-submesoscale resolving simulation. Moreover, we show that submesoscale flows strengthen shear-edge eddies and in consequence lee cyclones at the northern edge of the Agulhas Current, as well as the leakage pathway in the region of the filaments that takes place outside of mesoscale eddies. This indicates that the increase in leakage can be attributed to stronger Agulhas filaments, when submesoscale flows are resolved.
    Description: Leakage of warm, salty waters from the Indian Ocean into the Atlantic increases by up to 40 % in high-resolution numerical ocean model simulations, suggesting that low-resolution models underestimate this key part of the global meridional overturning circulation.
    Description: Agence Nationale de la Recherche (French National Research Agency) https://doi.org/10.13039/501100001665
    Description: https://hdl.handle.net/20.500.12085/c572cde8-a82c-4c2d-9bd7-288dfc8f1939
    Description: https://www.aoml.noaa.gov/phod/gdp/data.php
    Description: https://resources.marine.copernicus.eu/?option=com_csw&view=details&product_id=GLOBAL_REANALYSIS_PHY_001_030
    Description: https://resources.marine.copernicus.eu/?option=com_csw&view=details&product_id=SEALEVEL_GLO_PHY_L4_REP_OBSERVATIONS_008_047
    Keywords: ddc:551.46 ; Climate and Earth system modelling ; Physical oceanography
    Language: English
    Type: doc-type:article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-04-20
    Description: These data aim at evaluating the hypothesis of long-distance dispersal across the North Atlantic and the Equatorial Atlantic belt for the cold seep mussels Gigantidas childressi, G. mauritanicus, Bathymodiolus heckerae and B. boomerang. We combined mitochondrial Cox1 barcoding of some mussel specimens from both sides of the Atlantic (American vs European/African margins) with larval dispersal trajectories simulated from the VIKING20X model of the Atlantic circulation at a spatial scale not yet investigated. Larval dispersal modelling data correspond to transports of larvae over one year in surface waters from 21 geographic localities over 5 consecutive years (2015, 2016, 2017, 2018 and 2019) and 5 spawning dates (November, December, January, February and March) per year. Genetic data correspond to the geo-referenced sequences obtained for the 4 mussel species from some of the localities where larvae have been released during the modelling approach.
    Keywords: Analysis; Atlantic; Atlantic_Larval_Dispersal_Modelling_Experiment; Barbados_Prism_Kick_em_Jenny_crater_(KJC); Barbados_Prism_Trinidad_prism_(TRI); Barbados Prism; Bathymodiolus; Binary Object; Binary Object (File Size); Binary Object (Media Type); Cold seeps; DATE/TIME; ELEVATION; Equatorial Atlantic belt; Event label; EXP; Experiment; Experiment duration; File content; Gigantidas; Gulf_of_Guinea_Guiness_(GUIN); Gulf_of_Guinea_Nigeria_margin_(NM); Gulf_of_Guinea_West_Africa_margin_(WAM); Gulf_of_Mexico_Alaminos_Canyon_(AC); Gulf_of_Mexico_Brine_Pool_(BP); Gulf_of_Mexico_Louisiana_Slope_(LS); Gulf of Guinea; Gulf of Mexico; iAtlantic; Integrated Assessment of Atlantic Marine Ecosystems in Space and Time; larval dispersal; LATITUDE; Location; LONGITUDE; Mid-Atlantic_Ridge_Logatchev_seeps_(LOG); Mid-Atlantic Ridge; Model; Mussel; N_Mid-Atlantic_Ridge_Atlantis_Fracture_Zone_(LOST); NE_Atlantic_margin_Gulf_of_Cadiz_(GC); NE_Atlantic_margin_SWIM_fault_(SWIM); NE Atlantic margin; North_Brazil_margin_Amazon_fan_(AM); North Atlantic; North Brazil margin; North Mid-Atlantic Ridge; Ocean and sea region; Particles; South_Brazil_margin_Sao_Paulo_1_(SP); South_Brazil_margin_Sao_Paulo_2_(SPD); South Brazil margin; Speed, swimming; Temperature, water; US_Atlantic_Margin_Baltimore_Canyon_(BC); US_Atlantic_Margin_Bodie_Island_(BI); US_Atlantic_Margin_New_England_(NE); US_Atlantic_Margin_Norfolk_Canyon_(NC); US Atlantic Margin; West_Africa_Margin_Arguin_bank_(ARG); West_Africa_Margin_Cadamostro_Seamount_(CS); West Africa Margin
    Type: Dataset
    Format: text/tab-separated-values, 5252 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-09-28
    Description: A special focus in data mining is to identify agglomerations of data points in spatial or spatio-temporal databases. Multiple applications have been presented to make use of such clustering algorithms. However, applications exist, where not only dense areas have to be identified, but also requirements regarding the correlation of the cluster to a specific shape must be met, i.e. circles. This is the case for eddy detection in marine science, where eddies are not only specified by their density, but also their circular-shaped rotation. Traditional clustering algorithms lack the ability to take such aspects into account. In this paper, we introduce Vortex Correlation Clustering which aims to identify those correlated groups of objects oriented along a vortex. This can be achieved by adapting the Circle Hough Transformation, already known from image analysis. The presented adaptations not only allow to cluster objects depending on their location next to each other, but also allows to take the orientation of individual objects into considerations. This allows for a more precise clustering of objects. A multi-step approach allows to analyze and aggregate cluster candidates, to also include final clusters, which do not perfectly satisfy the shape condition. We evaluate our approach upon a real world application, to cluster particle simulations composing such shapes. Our approach outperforms comparable methods of clustering for this application both in terms of effectiveness and efficiency.
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-01-18
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-02-07
    Description: In highly fragmented and relatively stable cold-seep ecosystems, species are expected to exhibit high migration rates and long-distance dispersal of long-lived pelagic larvae to maintain genetic integrity over their range. Accordingly, several species inhabiting cold seeps are widely distributed across the whole Atlantic Ocean, with low genetic divergence between metapopulations on both sides of the Atlantic Equatorial Belt (AEB, i.e. Barbados and African/European margins). Two hypotheses may explain such patterns: (i) the occurrence of present-day gene flow or (ii) incomplete lineage sorting due to large population sizes and low mutation rates. Here, we evaluated the first hypothesis using the cold seep mussels Gigantidas childressi, G. mauritanicus, Bathymodiolus heckerae and B. boomerang. We combined COI barcoding of 763 individuals with VIKING20X larval dispersal modelling at a large spatial scale not previously investigated. Population genetics supported the parallel evolution of Gigantidas and Bathymodiolus genera in the Atlantic Ocean and the occurrence of a 1-3 Million-year-old vicariance effect that isolated populations across the Caribbean Sea. Both population genetics and larval dispersal modelling suggested that contemporary gene flow and larval exchanges are possible across the AEB and the Caribbean Sea, although probably rare. When occurring, larval flow was eastward (AEB - only for B. boomerang) or northward (Caribbean Sea - only for G. mauritanicus). Caution is nevertheless required since we focused on only one mitochondrial gene, which may underestimate gene flow if a genetic barrier exists. Non-negligible genetic differentiation occurred between Barbados and African populations, so we could not discount the incomplete lineage sorting hypothesis. Larval dispersal modelling simulations supported the genetic findings along the American coast with high amounts of larval flow between the Gulf of Mexico (GoM) and the US Atlantic Margin, although the Blake Ridge population of B. heckerae appeared genetically differentiated. Overall, our results suggest that additional studies using nuclear genetic markers and population genomics approaches are needed to clarify the evolutionary history of the Atlantic bathymodioline mussels and to distinguish between ongoing and past processes.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-02-07
    Description: The Makassar Strait, the main passageway of the Indonesian Throughflow (ITF), is an important component of Indo-Pacific climate through its inter-basin redistribution of heat and freshwater. Observational studies suggest that wind-driven freshwater advection from the marginal seas into the Makassar Strait modulates the strait's surface transport. However, direct observations are too short (〈15 years) to resolve variability on decadal timescales. Here we use a series of global ocean simulations to assess the advected freshwater contributions to ITF transport across a range of timescales. The simulated seasonal and interannual freshwater dynamics are consistent with previous studies. On decadal timescales, we find that wind-driven advection of South China Sea (SCS) waters into the Makassar Strait modulates upper-ocean ITF transport. Atmospheric circulation changes associated with Pacific decadal variability appear to drive this mechanism via Pacific lower-latitude western boundary current interactions that affect the SCS circulation. Key Points: - A global ocean model is used to show how freshwater impacts the decadal variability of transport through the main Indonesian Throughflow pathway - Wind-driven advection of South China Sea freshwater induces an upstream pressure gradient that reduces transport - Freshwater input is modulated by atmospheric circulation changes associated with Pacific decadal variability
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-02-07
    Description: A hierarchy of global 1/4° (ORCA025) and Atlantic Ocean 1/20° nested (VIKING20X) ocean/sea-ice models is described. It is shown that the eddy-rich configurations performed in hindcasts of the past 50–60 years under CORE and JRA55-do atmospheric forcings realistically simulate the large-scale horizontal circulation, the distribution of the mesoscale, overflow and convective processes, and the representation of regional current systems in the North and South Atlantic. The representation, and in particular the long-term temporal evolution, of the Atlantic Meridional Overturning Circulation (AMOC) strongly depends on numerical choices for the application of freshwater fluxes. The interannual variability of the AMOC instead is highly correlated among the model experiments and also with observations, including the 2010 minimum observed by RAPID at 26.5° N pointing at a dominant role of the forcing. Regional observations in western boundary current systems at 53° N, 26.5° N and 11° S are explored in respect to their ability to represent the AMOC and to monitor the temporal evolution of the AMOC. Apart from the basin-scale measurements at 26.5° N, it is shown that in particular the outflow of North Atlantic Deepwater at 53° N is a good indicator of the subpolar AMOC trend during the recent decades, if the latter is provided in density coordinates. The good reproduction of observed AMOC and WBC trends in the most reasonable simulations indicate that the eddy-rich VIKING20X is capable in representing realistic forcing-related and ocean-intrinsic trends.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-02-07
    Description: How far do marine larvae disperse in the ocean? Decades of population genetic studies have revealed generally low levels of genetic structure at large spatial scales (hundreds of kilometres). Yet this result, typically based on discrete sampling designs, does not necessarily imply extensive dispersal. Here, we adopt a continuous sampling strategy along 950 km of coast in the northwestern Mediterranean Sea to address this question in four species. In line with expectations, we observe weak genetic structure at a large spatial scale. Nevertheless, our continuous sampling strategy uncovers a pattern of isolation by distance at small spatial scales (few tens of kilometres) in two species. Individual-based simulations indicate that this signal is an expected signature of restricted dispersal. At the other extreme of the connectivity spectrum, two pairs of individuals that are closely related genetically were found more than 290 km apart, indicating long-distance dispersal. Such a combination of restricted dispersal with rare long-distance dispersal events is supported by a high-resolution biophysical model of larval dispersal in the study area, and we posit that it may be common in marine species. Our results bridge population genetic studies with direct dispersal studies and have implications for the design of marine reserve networks.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-02-07
    Description: Deep convection and associated deep water formation are key processes for climate variability, since they impact the oceanic uptake of heat and trace gases and alter the structure and strength of the global overturning circulation. For long, deep convection in the subpolar North Atlantic was thought to be confined to the central Labrador Sea in the western subpolar gyre (SPG). However, there is increasing observational evidence that deep convection also has occurred in the eastern SPG south of Cape Farewell and in the Irminger Sea, in particular, in 2015–2018. Here we assess this recent event in the context of the temporal evolution of spatial deep convection patterns in the SPG since the mid-twentieth century, using realistic eddy-rich ocean model simulations. These reveal a large interannual variability with changing contributions of the eastern SPG to the total deep convection volume. Notably, in the late 1980s to early 1990s, the period with highest deep convection intensity in the Labrador Sea related to a persistent positive phase of the North Atlantic Oscillation, the relative contribution of the eastern SPG was small. In contrast, in 2015–2018, deep convection occurred with an unprecedented large relative contribution of the eastern SPG. This is partly linked to a smaller north-westward extent of deep convection in the Labrador Sea compared to previous periods of intensified deep convection, and may be a first fingerprint of freshening trends in the Labrador Sea potentially associated with enhanced Greenland melting and the oceanic advection of the 2012–2016 eastern North Atlantic fresh anomaly.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: video
    Format: video
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...