GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2024-01-20
    Keywords: Climate - Biogeochemistry Interactions in the Tropical Ocean; CT; DATE/TIME; Fugacity of carbon dioxide (air, 100% humidity); Fugacity of carbon dioxide in seawater; LATITUDE; LONGITUDE; M93; M93-track; Meteor (1986); Salinity; SFB754; Southeast Pacific; Temperature, water; Underway cruise track measurements; Wind speed
    Type: Dataset
    Format: text/tab-separated-values, 6454 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Köhn, Eike; Thomsen, Soeren; Arévalo-Martínez, Damian L; Kanzow, Torsten (2017): Submesoscale CO2 variability across an upwelling front off Peru. Ocean Science, 13(6), 1017-1033, https://doi.org/10.5194/os-13-1017-2017
    Publication Date: 2024-01-20
    Description: While being a major source for atmospheric CO2 the Peruvian upwelling region exhibits strong variability in surface fCO2 on short spatial and temporal scales. Understanding the physical processes driving the strong variability is of fundamental importance for constraining the effect of marine emissions from upwelling regions on the global CO2 budget. In this study, a frontal decay on length scales of (10km) was observed off the Peruvian coast following a pronounced decrease in downfrontal wind speed with a time lag of 9 hours. Simultaneously, the sea-to-air flux of CO2 on the inshore (cold) side of the front dropped from up to 80 to 10 mmol/m**2/day, while the offshore (warm) side of the front was constantly outgassing at a rate of 10-20 mmol/m**2/day. Based on repeated ship transects the decay of the front was observed to occur in two phases. The first phase was characterized by a development of coherent surface temperature anomalies which gained in amplitude over 6-9 hours. The second phase was characterized by a disappearance of the surface temperature front within 6 hours. Submesoscale mixed layer instabilities were present but seem too slow to completely remove the temperature gradient in this short time period. Dynamics such as a pressure driven gravity current appear to be a likely mechanism behind the evolution of the front.
    Keywords: Climate - Biogeochemistry Interactions in the Tropical Ocean; SFB754
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Ocean Science, 13 (6). pp. 1017-1033.
    Publication Date: 2020-02-06
    Description: As a major source for atmospheric CO2, the Peruvian upwelling region exhibits strong variability in surface fCO2 on short spatial and temporal scales. Understanding the physical processes driving the strong variability is of fundamental importance for constraining the effect of marine emissions from upwelling regions on the global CO2 budget. In this study, a frontal decay on length scales of 𝒪(10 km) was observed off the Peruvian coast following a pronounced decrease in down-frontal (equatorward) wind speed with a time lag of 9 h. Simultaneously, the sea-to-air flux of CO2 on the inshore (cold) side of the front dropped from up to 80 to 10 mmol m−2 day−1, while the offshore (warm) side of the front was constantly outgassing at a rate of 10–20 mmol m−2 day−1. Based on repeated ship transects the decay of the front was observed to occur in two phases. The first phase was characterized by a development of coherent surface temperature anomalies which gained in amplitude over 6–9 h. The second phase was characterized by a disappearance of the surface temperature front within 6 h. Submesoscale mixed-layer instabilities were present but seem too slow to completely remove the temperature gradient in this short time period. Dynamics such as a pressure-driven gravity current appear to be a likely mechanism behind the evolution of the front.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Journal of Geophysical Research: Oceans, 122 (1). pp. 171-184.
    Publication Date: 2020-02-06
    Description: The tropical Atlantic exerts a major influence in climate variability through strong air-sea interactions. Within this region, the eastern side of the equatorial band is characterized by strong seasonality, whereby the most prominent feature is the annual development of the Atlantic Cold Tongue (ACT). This band of low sea surface temperatures (∼22-23°C) is typically associated with upwelling-driven enhancement of surface nutrient concentrations and primary production. Based on a detailed investigation of the distribution and sea-to-air fluxes of N2O in the eastern equatorial Atlantic (EEA), we show that the onset and seasonal development of the ACT can be clearly observed in surface N2O concentrations, which increase progressively as the cooling in the equatorial region proceeds during spring-summer. We observed a strong influence of the surface currents of the EEA on the N2O distribution, which allowed identifying “high” and “low” concentration regimes that were, in turn, spatially delimited by the extent of the warm eastward-flowing North Equatorial Countercurrent and the cold westward-flowing South Equatorial Current. Estimated sea-to-air fluxes of N2O from the ACT (mean 5.18±2.59 µmol m−2 d−1) suggests that in May-July 2011 this cold-water band doubled the N2O efflux to the atmosphere with respect to the adjacent regions, highlighting its relevance for marine tropical emissions of N2O. This article is protected by copyright. All rights reserved.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-02-06
    Description: The climate active trace-gas carbonyl sulfide (OCS) is the most abundant sulfur gas in the atmosphere. A missing source in its atmospheric budget is currently suggested, resulting from an upward revision of the vegetation sink. Tropical oceanic emissions have been proposed to close the resulting gap in the atmospheric budget. We present a bottom-up approach including (i) new observations of OCS in surface waters of the tropical Atlantic, Pacific and Indian oceans and (ii) a further improved global box model to show that direct OCS emissions are unlikely to account for the missing source. The box model suggests an undersaturation of the surface water with respect to OCS integrated over the entire tropical ocean area and, further, global annual direct emissions of OCS well below that suggested by top-down estimates. In addition, we discuss the potential of indirect emission from CS2 and dimethylsulfide (DMS) to account for the gap in the atmospheric budget. This bottom-up estimate of oceanic emissions has implications for using OCS as a proxy for global terrestrial CO2 uptake, which is currently impeded by the inadequate quantification of atmospheric OCS sources and sinks.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-07-21
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: slideshow
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-09-19
    Description: The oxygen minimum zone (OMZ) in the eastern tropical South Pacific Ocean is tightly connected to the coastal upwelling system off Peru. The high biological productivity off Peru is therefore, driven by the complex interplay between the amount of nutrients recycled by remineralisation processes in the OMZ and the upwelling which brings these nutrients to the surface layer. However, surprisingly little is known about organic matter cycling and its effects on biogeochemical processes in the OMZ off Peru. To this end we conducted a first comprehensive study on the role of organic matter for the biogeochemical processes and the maintenance of the OMZ off Peru. M138 combined measurements of marine biogeochemistry, microbiology, physical oceanography and air chemistry with foci on (i) the efficiency of the biological pump, (ii) the nitrogen cycle processes in the OMZ, (iii) the ventilation of the OMZ as well as (iv) the air/sea gas exchange across the ocean/atmosphere interface and (v) aerosol deposition. The METEOR cruise M138 was performed as part of the third phase of the SFB754 'Climate-Biogeochemistry Interactions in the Tropical Ocean' (www.sfb754.de).
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    In:  [Talk] In: Good Hope for Earth Science - 2017 Joint IAPSO-IAMAS-IAGA Assembly, 27.08.-01.09.2017, Cape Town, South Africa .
    Publication Date: 2019-09-23
    Description: The southwestern basin of the Indian Ocean (SWIO) remains a rather under-sampled region with regards to nitrogen cycle processes. Here we present the results of extensive surface and water column nitrous oxide (N2O) measurements as well as the first reported open ocean measurements of hydroxylamine (NH2OH). Wind-driven upwelling in the zonal band between 5°S and 10°S led to an enhanced efflux of N2O to the atmosphere with saturation values up to 122% and a maximum sea-to-air flux of 2.3 nmol m-2 s-1. N2O depth profiles showed supersaturation conditions throughout the water column with a distinct maximum (~ 30 nmol L-1) at about 1000 m. Excess N2O (ΔN2O) was positively correlated with apparent oxygen utilization (AOU) and nitrate concentrations although different slopes of the ΔN2O/AOU relationships could be identified above and below the concentration maxima. Although the vertical distribution of NH2OH was highly variable, combined analysis with N2O and nutrient data suggests nitrification as the major formation pathway of N2O in the SWIO. Our observations suggest that the SWIO is a rather weak, yet, perennial source of atmospheric N2O which should be considered in future efforts aiming to long-term monitoring of greenhouse gases in the Indian Ocean.
    Type: Conference or Workshop Item , NonPeerReviewed , info:eu-repo/semantics/conferenceObject
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...