GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Copernicus GmbH  (2)
  • Zhang, Chi  (2)
Material
Publisher
  • Copernicus GmbH  (2)
Person/Organisation
Language
Years
  • 1
    Online Resource
    Online Resource
    Copernicus GmbH ; 2017
    In:  Atmospheric Chemistry and Physics Vol. 17, No. 17 ( 2017-09-05), p. 10383-10393
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 17, No. 17 ( 2017-09-05), p. 10383-10393
    Abstract: Abstract. Precipitation over Southwest China (SWC) significantly decreased during 1979–2013. The months from July to September (JAS) contributed the most to the decrease in precipitation. By tracing moisture sources of JAS precipitation over the SWC region, it is found that most moisture originates in regions from the northern Indian Ocean to SWC and from South China Sea to SWC. The major moisture contributing area is divided into an extended west region, SWC, and an extended east region. The extended west region is mainly influenced by the South Asian summer monsoon (SASM) and the westerlies, while the extended east region is mainly influenced by the East Asian summer monsoon (EASM). The extended west, SWC, and extended east regions contribute 48.2, 15.5, and 24.5 % of the moisture for the SWC precipitation, respectively. Moisture supply from the extended west region decreased at a rate of −7.9 mm month−1 decade−1, whereas that from the extended east increased at a rate of 1.4 mm month−1 decade−1, resulting in an overall decrease in moisture supply. Further analysis reveals that the decline of JAS precipitation is mainly caused by change in the seasonal-mean component rather than the transient component of the moisture transport over the SWC region. In addition, the dynamic processes (i.e., changes in wind) rather than the thermodynamic processes (i.e., changes in specific humidity) are dominant in affecting the seasonal-mean moisture transport. A prevailing easterly anomaly of moisture transport that weakened moisture supply from the Indian Ocean is to a large extent responsible for the precipitation decrease over the SWC region.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2017
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Copernicus GmbH ; 2022
    In:  Hydrology and Earth System Sciences Vol. 26, No. 8 ( 2022-04-19), p. 1925-1936
    In: Hydrology and Earth System Sciences, Copernicus GmbH, Vol. 26, No. 8 ( 2022-04-19), p. 1925-1936
    Abstract: Abstract. The inherently dry summer climate of the Iberian Peninsula (IP) is undergoing drought exacerbated by more intense warming and reduced precipitation. Although many studies have studied changes in summer climate factors, it is still unclear how the changes in moisture contribution from the sources lead to the decrease in summer precipitation. This study investigates the differences in the IP precipitationshed from 1980 to 1997 and 1998 to 2019 using the Water Accounting Model-2layers with ERA5 data, and assesses the role of local moisture recycling and external moisture in reducing summer precipitation. Our findings indicate that the moisture contributions from the local IP, and from the west and the east of the precipitationshed, contributed 1.7, 3.6 and 1.1 mm per month less precipitation after 1997 than before 1997, accounting for 26 %, 57 % and 17 % of the main source supply reduction, respectively. The significant downward trend of the IP local moisture recycling closely links to the disappearance of the wet years after 1997 as well as the decrease in local contribution in the dry years. Moreover, the feedback between the weakened local moisture recycling and the drier land surface can exacerbate the local moisture scarcity and summer drought.
    Type of Medium: Online Resource
    ISSN: 1607-7938
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2022
    detail.hit.zdb_id: 2100610-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...