GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Wang, Fei  (7)
  • 1
    Online Resource
    Online Resource
    MDPI AG ; 2022
    In:  Water Vol. 14, No. 6 ( 2022-03-14), p. 903-
    In: Water, MDPI AG, Vol. 14, No. 6 ( 2022-03-14), p. 903-
    Abstract: At present, there are few studies on known bacterial species and even less on fungi in biological algae control technology. In this paper, the green eutrophic shallow water lake Scenedesmus quadricauda (Turpin) was used as the research object, and white rot fungi, which has a high removal effect on water pollutants, algae and biological toxins, was used for algae control. The extent of the removal effect, physiological characteristics and the internal functional groups of the algae cells in the white rot fungi solution, the supernatant of the white rot fungi solution after centrifugation and the sterilized white rot fungi solution were investigated. The results showed that the best algae solubilization effect of the algae control system was achieved at 250 mg/L, with 8 mg/L of dissolved oxygen and a hydraulic retention time of 48 h. The average algae lysis rate was 85.48%, the average dehydrogenase activity reduction rate was 59.23%, the average soluble protein reduction rate was 65.16% and the average malondialdehyde content increased to 0.128 umol/L. After treatment with the white rot algae control system, the spatial structure of the Turpin cells was severely disrupted, and significant lysis occurred within the algal cells, forcing the release of intracellularly soluble substances, and reducing the dehydrogenase activity of the Turpin cells, thus inhibiting the growth activity of the algae cells. A further reduction in the soluble protein content reduces the nutrients required for the growth of Turpin, exacerbating the rate of reduction in the physiological metabolic activity of the Turpin cells and, ultimately, the inhibition or killing of the algal cells. The results of this research may provide theoretical guidance for the microbial control of water eutrophication; however, whether there will be secondary pollution after the algae dissolution of this process is worthy of further study.
    Type of Medium: Online Resource
    ISSN: 2073-4441
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2521238-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Toxics, MDPI AG, Vol. 11, No. 6 ( 2023-06-07), p. 514-
    Abstract: Soil pollution is a global environmental problem. Nanoscale zero-valent iron (nZVI) as a kind of emerging remedial material is used for contaminated soil, which can quickly and effectively degrade and remove pollutants such as organic halides, nitrates and heavy metals in soil, respectively. However, nZVI and its composites can enter the soil environment in the application process, affect the physical and chemical properties of the soil, be absorbed by microorganisms and affect the growth and metabolism of microorganisms, thus affecting the ecological environment of the entire soil. Because of the potential risks of nZVI to the environment and ecosystems, this paper summarizes the current application of nZVI in the remediation of contaminated soil environments, summarizes the various factors affecting the toxic effects of nZVI particles and comprehensively analyzes the toxic effects of nZVI on microorganisms, toxic mechanisms and cell defense behaviors to provide a theoretical reference for subsequent biosafety research on nZVI.
    Type of Medium: Online Resource
    ISSN: 2305-6304
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2733883-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Environmental Pollutants and Bioavailability, Informa UK Limited, Vol. 36, No. 1 ( 2024-12-31)
    Type of Medium: Online Resource
    ISSN: 2639-5932 , 2639-5940
    Language: English
    Publisher: Informa UK Limited
    Publication Date: 2024
    detail.hit.zdb_id: 3005645-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    MDPI AG ; 2022
    In:  International Journal of Environmental Research and Public Health Vol. 19, No. 9 ( 2022-05-02), p. 5525-
    In: International Journal of Environmental Research and Public Health, MDPI AG, Vol. 19, No. 9 ( 2022-05-02), p. 5525-
    Abstract: At present, research on the influence of human activities (especially urbanization) on the microbial diversity, structural composition, and spatial distribution of rivers is limited. In this paper, to explore the prokaryotic community structure and the relationship between the community and environmental factors in the Jialing River Basin of Chongqing, so as to provide a basis for monitoring microorganisms in the watershed. The V3–V4 region of the 16 S rRNA gene was analyzed by high-throughput sequencing and the microbial community of the waters of the Jialing River was analyzed for the diversity and composition of the prokaryotic community as well as the species difference of four samples and correlations with environmental factors. The main results of this study were as follows: (1) The diversity index showed that there were significant differences in the biodiversity among the four regions. At the genus level, Limnohabitans, unclassified_f_Comamonadaceae, and Hgcl_clade were the main dominant flora with a high abundance and evenness. (2) A Kruskal–Wallis H test was used to analyze the differences of species composition among the communities and the following conclusions were drawn: each group contained a relatively high abundance of Limnohabitans; the Shapingba District had a higher abundance of Limnohabitans, the Hechuan District had a wide range of unclassified_f_Comamonadaceae, and the Beibei District had a higher Hgcl_clade. (3) Through the determination of the physical and chemical indicators of the water—namely, total nitrogen, total phosphorus, chemical oxygen demand, chlorophyll A, and an analysis by an RDA diagram, the results demonstrated that the distribution of microbial colonies was significantly affected by the environmental factors of the water. Chemical oxygen demand and ammonia nitrogen had a significant influence on the distribution of the colonies. Different biological colonies were also affected by different environmental factors.
    Type of Medium: Online Resource
    ISSN: 1660-4601
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2175195-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    MDPI AG ; 2022
    In:  International Journal of Environmental Research and Public Health Vol. 19, No. 21 ( 2022-10-25), p. 13867-
    In: International Journal of Environmental Research and Public Health, MDPI AG, Vol. 19, No. 21 ( 2022-10-25), p. 13867-
    Abstract: To investigate the treatment effect of algae biosorbent on heavy metal wastewater, in this paper, the adsorption effect of M. aeruginosa powder on heavy metal ions copper, cadmium and nickel was investigated using the uniform experimental method, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and TG-DSC comprehensive thermal analysis. The experimental results showed that the initial concentration of copper ion solution was 25 mg/L, the temperature was 30 °C, the pH value was 8 and the adsorption time was 5 h, which was the best condition for the removal of copper ions by algae powder adsorption, and the removal rate was 83.24%. The initial concentration of cadmium ion solution was 5 mg/L, the temperature was 35 °C, the pH value was 8 and the adsorption time was 4 h, which was the best condition for the adsorption of cadmium ion by algae powder, and the removal rate was 92.00%. The initial nickel ion solution concentration of 15 mg/L, temperature of 35 °C, pH value of 7 and adsorption time of 1 h were the best conditions for the adsorption of nickel ions by algae powder, and the removal rate was 88.67%. The spatial structure of algae powder changed obviously before and after adsorbing heavy metals. The functional groups such as amino and phosphate groups on the cell wall of M. aeruginosa enhanced the adsorption effect of heavy metal ions copper, cadmium and nickel. Additionally, M. aeruginosa adsorption of heavy metal ions copper, cadmium, nickel is an exothermic process. The above experiments show that M. aeruginosa can be used as a biological adsorbent to remove heavy metals, which lays a theoretical foundation for the subsequent treatment of heavy metal pollution by algae.
    Type of Medium: Online Resource
    ISSN: 1660-4601
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2175195-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Water, MDPI AG, Vol. 15, No. 6 ( 2023-03-13), p. 1104-
    Abstract: In recent years, the frequent outbreaks of cyanobacterial blooms have caused severe water pollution in many rivers and lakes at home and abroad, endangering drinking water safety and human health. How to remove cyanobacteria from water bodies safely, quickly, and economically has attracted the attention of many scientists. Currently, the typical treatment methods for algae in algae-bearing water bodies are physical, biological, and chemical methods. The physical method of algae removal is for both the symptoms and the root cause, but the workload is extensive, with high input costs, and should not be used on a large scale. The biological method is low-cost, but the removal efficiency is slow and unsuitable for the treatment of sudden water bloom. The chemical method can kill algae quickly, but it is easy to cause secondary pollution. These methods are relatively independent of each other, so the choice of a practical combination of technologies is essential for algal bloom removal and eutrophication management. This paper reviews the current application status and advantages and disadvantages of algae removal technologies at home and abroad; classifies them from physical, chemical, biological, and combined methods; and provides an outlook on the future development direction of algae removal technologies.
    Type of Medium: Online Resource
    ISSN: 2073-4441
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2521238-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Sustainability, MDPI AG, Vol. 15, No. 1 ( 2023-01-03), p. 834-
    Abstract: The aim of this paper was to effectively reduce environmental pollution and further improve the enzymatic hydrolysis rate of corn straw. Thus, a pretreatment method for activating cellulose by using ionic liquid to treat metal ion solution was developed. By investigating the effects of the three factors of substrate mass fraction, reaction temperature, and reaction time, and the interaction between the factors on the pretreatment effect, the response surface design method was used to optimize the conditions of ionic liquid (1-butyl-3-methylimidazolium chloride) treatment of corn straw after activation, and the physicochemical structure and enzymatic hydrolysis efficiency before and after treatment were compared and analyzed. The experimental results showed that the yield of reducing sugar was increased by 157.85% and 150.41%, respectively, compared with the untreated corn straw. The analysis of chemical composition and structure showed that the cellulose content of the material increased significantly by 68.11% and 60.54%, respectively, after ionic liquid treatment. The results of the scanning electron microscope (SEM) observation and X-ray diffraction (XRD) showed that the relative crystallinity of the material decreased after ionic liquid treatment, which was more conducive to the enzymatic hydrolysis of cellulose.
    Type of Medium: Online Resource
    ISSN: 2071-1050
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2518383-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...