GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Frontiers in Earth Science, Frontiers Media SA, Vol. 9 ( 2021-3-26)
    Abstract: Warming air and sea temperatures, longer open-water seasons and sea-level rise collectively promote the erosion of permafrost coasts in the Arctic, which profoundly impacts organic matter pathways. Although estimates on organic carbon (OC) fluxes from erosion exist for some parts of the Arctic, little is known about how much OC is transformed into greenhouse gases (GHGs). In this study we investigated two different coastal erosion scenarios on Qikiqtaruk – Herschel Island (Canada) and estimate the potential for GHG formation. We distinguished between a delayed release represented by mud debris draining a coastal thermoerosional feature and a direct release represented by cliff debris at a low collapsing bluff. Carbon dioxide (CO 2 ) production was measured during incubations at 4°C under aerobic conditions for two months and were modeled for four months and a full year. Our incubation results show that mud debris and cliff debris lost a considerable amount of OC as CO 2 (2.5 ± 0.2 and 1.6 ± 0.3% of OC, respectively). Although relative OC losses were highest in mineral mud debris , higher initial OC content and fresh organic matter in cliff debris resulted in a ∼three times higher cumulative CO 2 release (4.0 ± 0.9 compared to 1.4 ± 0.1 mg CO 2 gdw –1 ), which was further increased by the addition of seawater. After four months, modeled OC losses were 4.9 ± 0.1 and 3.2 ± 0.3% in set-ups without seawater and 14.3 ± 0.1 and 7.3 ± 0.8% in set-ups with seawater. The results indicate that a delayed release may support substantial cycling of OC at relatively low CO 2 production rates during long transit times onshore during the Arctic warm season. By contrast, direct erosion may result in a single CO 2 pulse and less substantial OC cycling onshore as transfer times are short. Once eroded sediments are deposited in the nearshore , highest OC losses can be expected. We conclude that the release of CO 2 from eroding permafrost coasts varies considerably between erosion types and residence time onshore . We emphasize the importance of a more comprehensive understanding of OC degradation during the coastal erosion process to improve thawed carbon trajectories and models.
    Type of Medium: Online Resource
    ISSN: 2296-6463
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2021
    detail.hit.zdb_id: 2741235-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Polar Record, Cambridge University Press (CUP), Vol. 55, No. 4 ( 2019-07), p. 216-219
    Abstract: A lasting legacy of the International Polar Year (IPY) 2007–2008 was the promotion of the Permafrost Young Researchers Network (PYRN), initially an IPY outreach and education activity by the International Permafrost Association (IPA). With the momentum of IPY, PYRN developed into a thriving network that still connects young permafrost scientists, engineers, and researchers from other disciplines. This research note summarises (1) PYRN’s development since 2005 and the IPY’s role, (2) the first 2015 PYRN census and survey results, and (3) PYRN’s future plans to improve international and interdisciplinary exchange between young researchers. The review concludes that PYRN is an established network within the polar research community that has continually developed since 2005. PYRN’s successful activities were largely fostered by IPY. With 〉 200 of the 1200 registered members active and engaged, PYRN is capitalising on the availability of social media tools and rising to meet environmental challenges while maintaining its role as a successful network honouring the legacy of IPY.
    Type of Medium: Online Resource
    ISSN: 0032-2474 , 1475-3057
    Language: English
    Publisher: Cambridge University Press (CUP)
    Publication Date: 2019
    detail.hit.zdb_id: 3926-3
    detail.hit.zdb_id: 2100301-4
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Science of The Total Environment, Elsevier BV, Vol. 581-582 ( 2017-03), p. 434-447
    Type of Medium: Online Resource
    ISSN: 0048-9697
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2017
    detail.hit.zdb_id: 1498726-0
    detail.hit.zdb_id: 121506-1
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Global Change Biology, Wiley, Vol. 27, No. 12 ( 2021-06), p. 2822-2839
    Abstract: Permafrost thaw leads to thermokarst lake formation and talik growth tens of meters deep, enabling microbial decomposition of formerly frozen organic matter (OM). We analyzed two 17‐m‐long thermokarst lake sediment cores taken in Central Yakutia, Russia. One core was from an Alas lake in a Holocene thermokarst basin that underwent multiple lake generations, and the second core from a young Yedoma upland lake (formed ~70 years ago) whose sediments have thawed for the first time since deposition. This comparison provides a glance into OM fate in thawing Yedoma deposits. We analyzed total organic carbon (TOC) and dissolved organic carbon (DOC) content, n ‐alkane concentrations, and bacterial and archaeal membrane markers. Furthermore, we conducted 1‐year‐long incubations (4°C, dark) and measured anaerobic carbon dioxide (CO 2 ) and methane (CH 4 ) production. The sediments from both cores contained little TOC (0.7 ± 0.4 wt%), but DOC values were relatively high, with the highest values in the frozen Yedoma lake sediments (1620 mg L −1 ). Cumulative greenhouse gas (GHG) production after 1 year was highest in the Yedoma lake sediments (226 ± 212 µg CO 2 ‐C g −1  dw, 28 ± 36 µg CH 4 ‐C g −1  dw) and 3 and 1.5 times lower in the Alas lake sediments, respectively (75 ± 76 µg CO 2 ‐C g −1  dw, 19 ± 29 µg CH 4 ‐C g −1  dw). The highest CO 2 production in the frozen Yedoma lake sediments likely results from decomposition of readily bioavailable OM, while highest CH 4 production in the non‐frozen top sediments of this core suggests that methanogenic communities established upon thaw. The lower GHG production in the non‐frozen Alas lake sediments resulted from advanced OM decomposition during Holocene talik development. Furthermore, we found that drivers of CO 2 and CH 4 production differ following thaw. Our results suggest that GHG production from TOC‐poor mineral deposits, which are widespread throughout the Arctic, can be substantial. Therefore, our novel data are relevant for vast ice‐rich permafrost deposits vulnerable to thermokarst formation.
    Type of Medium: Online Resource
    ISSN: 1354-1013 , 1365-2486
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2021
    detail.hit.zdb_id: 2020313-5
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Microbiome, Springer Science and Business Media LLC, Vol. 9, No. 1 ( 2021-02-18)
    Abstract: Extreme terrestrial, analogue environments are widely used models to study the limits of life and to infer habitability of extraterrestrial settings. In contrast to Earth’s ecosystems, potential extraterrestrial biotopes are usually characterized by a lack of oxygen. Methods In the MASE project (Mars Analogues for Space Exploration), we selected representative anoxic analogue environments (permafrost, salt-mine, acidic lake and river, sulfur springs) for the comprehensive analysis of their microbial communities. We assessed the microbiome profile of intact cells by propidium monoazide-based amplicon and shotgun metagenome sequencing, supplemented with an extensive cultivation effort. Results The information retrieved from microbiome analyses on the intact microbial community thriving in the MASE sites, together with the isolation of 31 model microorganisms and successful binning of 15 high-quality genomes allowed us to observe principle pathways, which pinpoint specific microbial functions in the MASE sites compared to moderate environments. The microorganisms were characterized by an impressive machinery to withstand physical and chemical pressures. All levels of our analyses revealed the strong and omnipresent dependency of the microbial communities on complex organic matter. Moreover, we identified an extremotolerant cosmopolitan group of 34 poly-extremophiles thriving in all sites. Conclusions Our results reveal the presence of a core microbiome and microbial taxonomic similarities between saline and acidic anoxic environments. Our work further emphasizes the importance of the environmental, terrestrial parameters for the functionality of a microbial community, but also reveals a high proportion of living microorganisms in extreme environments with a high adaptation potential within habitability borders.
    Type of Medium: Online Resource
    ISSN: 2049-2618
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2021
    detail.hit.zdb_id: 2697425-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...