GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Soar, Philip J.  (2)
Material
Publisher
Language
Years
  • 1
    In: River Research and Applications, Wiley, Vol. 19, No. 5-6 ( 2003-09), p. 533-549
    Abstract: Riffle–pool sequences are the dominant bedforms in gravel and mixed bedded channels of intermediate slope. Their fundamental importance in determining the mesoscale habitat environment is demonstrated in their widespread recreation in channel restoration and rehabilitation schemes. This paper explores the hydraulic functioning of riffle–pool bedforms, particularly the variations in the hydraulic performance of different bed oscillation morphologies. It addresses the need for a quantitative means of classifying flow behaviour that can be applied in functional ecohydraulic river rehabilitation designs. Information from reaches on two physically contrasting UK rivers with well marked riffle–pool topography are used to illustrate the approach. The reaches are mapped to obtain a detailed channel morphology. Surveys describing the streamwise depth‐averaged velocities at three flow stages are interpolated to a common regular grid, grouped using cluster analysis, and then the validity of each cluster as a distinct hydraulic patch class is assessed statistically using analysis of variance. The spatial pattern of the hydraulic patch classes is then overlain on the bed topography to link the patches to the bed morphology. The procedure groups locations along the channel which display similar suites of velocity values at different flow stages and thus differentiates between areas in the channel within which the hydraulic habitat is spatially relatively invariant from those where abrupt changes occur. It also allows the quantitative description of different hydraulic patch classes. Overlay of the hydraulic patch class boundaries on channel reach topography provides a simple but innovative method of exploring and defining the spatial hydraulic habitat implications of riffle–pools of different topographic forms. Copyright © 2003 John Wiley & Sons, Ltd.
    Type of Medium: Online Resource
    ISSN: 1535-1459 , 1535-1467
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2003
    detail.hit.zdb_id: 2074114-5
    SSG: 12
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Hydrological Processes, Wiley, Vol. 19, No. 18 ( 2005-11-30), p. 3631-3648
    Abstract: Output from a three‐dimensional numerical flow model (SSIIM) is used in conjunction with high‐resolution topographic and velocity data to assess such models for eco‐hydraulic applications in river channel design and habitat appraisal. A new methodology for the comparison between field measurement and model output is detailed. This involves a comparison between conventional goodness‐of‐fit approaches applied to a spatially structured (riffle and pool) sample of model and field data, and a ‘relaxation’ method based upon the spatial semivariance of model/field departures. Conventional assessment indicates that the model predicts point‐by‐point velocity characteristics on a 0·45 m mesh to within ±0·1 m s −1 over 80% of the channel area at low flow, and 50% of the area at high in‐bank flow. When a relative criterion of model fit is used, however, the model appears to perform less well: 60–70% of channel area has predicted velocities that depart from observed velocities by more than 10%. Regression analysis of observed and predicted velocities gives more cause for optimism, but all of these conventional indicators of goodness of fit neglect important spatial characteristics of model performance. Spatial semivariance is a means of supplementing model appraisal in this respect. In particular, using the relaxation approach, results are greatly improved: at a high in‐bank flow, the model results match field measurements to within 0·1 m s −1 for more than 95% of the total channel area, provided that model and field comparisons are allowed within a radius of approximately 1 m from the original point of measurement. It is suggested that this revised form of model assessment is of particular relevance to eco‐hydraulic applications, where some degree of spatial and temporal dynamism (or uncertainty) is a characteristic. The approach may also be generalized to other environmental science modelling applications where the spatial attributes of model fits are of interest. Copyright © 2005 John Wiley & Sons, Ltd.
    Type of Medium: Online Resource
    ISSN: 0885-6087 , 1099-1085
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2005
    detail.hit.zdb_id: 1479953-4
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...