GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Onken, Reiner  (2)
Material
Person/Organisation
Language
Years
  • 1
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 1998
    In:  Journal of Geophysical Research: Oceans Vol. 103, No. C10 ( 1998-09-15), p. 21469-21479
    In: Journal of Geophysical Research: Oceans, American Geophysical Union (AGU), Vol. 103, No. C10 ( 1998-09-15), p. 21469-21479
    Abstract: Mechanical energy terms are calculated from moored current meter data in the Cape Verde Frontal Zone (about 20°N, 25°W) and compared with those derived from a mesoscale model of this frontal region. The model is of the Bleck and Boudra [1981] type with isopycnal coordinates. An initially zonal jet, representing the Canary Current, is allowed to develop under the influence of baroclinic and barotropic instability processes. We find reasonable agreement in magnitudes, somewhat smaller in the model, and similar distributions in the vertical. This leads to the conclusion that the energy transfer terms from the model can be expected to be sufficiently close to reality. Determination of the transfer terms confirms that the energy transfer in the zone is dominated by baroclinic instability processes while barotropic instability is of minor importance. Average baroclinic instability energy transfer terms reach values of 2–3 μW m −3 in the pycnocline. Peak layer mean values are of the order 10 μW m −3 . It is shown that the spatial distribution of active transfer regions is closely related to the structure of the transient eddy field in the frontal zone and that strong instability processes are restricted to the pycnocline.
    Type of Medium: Online Resource
    ISSN: 0148-0227
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 1998
    detail.hit.zdb_id: 2033040-6
    detail.hit.zdb_id: 3094104-0
    detail.hit.zdb_id: 2130824-X
    detail.hit.zdb_id: 2016813-5
    detail.hit.zdb_id: 2016810-X
    detail.hit.zdb_id: 2403298-0
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 161666-3
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 2969341-X
    detail.hit.zdb_id: 161665-1
    detail.hit.zdb_id: 3094268-8
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 3094181-7
    detail.hit.zdb_id: 3094219-6
    detail.hit.zdb_id: 3094167-2
    detail.hit.zdb_id: 2220777-6
    detail.hit.zdb_id: 3094197-0
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 1992
    In:  Journal of Geophysical Research: Oceans Vol. 97, No. C1 ( 1992-01-15), p. 703-715
    In: Journal of Geophysical Research: Oceans, American Geophysical Union (AGU), Vol. 97, No. C1 ( 1992-01-15), p. 703-715
    Abstract: The Guinea Dome is a permanent, quasi‐stationary feature on the eastern side of the thermal ridge extending zonally across the tropical North Atlantic. The dome is a part of the large‐scale near‐surface flow fields associated with the North Equatorial Current, the North Equatorial Countercurrent and the North Equatorial Undercurrent. In the present study, historical and recently obtained hydrographic data are combined to investigate the thermohaline structure and geostrophic flow field in the vicinity of the dome. It is shown that the Guinea Dome exists throughout the year both in subthermocline and thermocline layers, that it has a corresponding cyclonic geostrophic flow, and that seasonal changes occur with respect to its vertical structure, horizontal extent, and position. The observational results are then compared with simulations from a general circulation model of the tropical Atlantic. A seven‐year simulation forced by observed monthly winds is run to compute a monthly climatology. The model adequately simulates the Guinea Dome with respect to its structure, flow field, and seasonal variability.
    Type of Medium: Online Resource
    ISSN: 0148-0227
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 1992
    detail.hit.zdb_id: 2033040-6
    detail.hit.zdb_id: 3094104-0
    detail.hit.zdb_id: 2130824-X
    detail.hit.zdb_id: 2016813-5
    detail.hit.zdb_id: 2016810-X
    detail.hit.zdb_id: 2403298-0
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 161666-3
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 2969341-X
    detail.hit.zdb_id: 161665-1
    detail.hit.zdb_id: 3094268-8
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 3094181-7
    detail.hit.zdb_id: 3094219-6
    detail.hit.zdb_id: 3094167-2
    detail.hit.zdb_id: 2220777-6
    detail.hit.zdb_id: 3094197-0
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...