GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Geology, Geological Society of America, Vol. 47, No. 12 ( 2019-12-01), p. 1185-1188
    Abstract: An exceptionally large cold-water coral mound province (CMP) was recently discovered extending over 80 km along the Namibian shelf (offshore southwestern Africa) in water depths of 160–270 m. This hitherto unknown CMP comprises 〉 2000 mounds with heights of up to 20 m and constitutes the largest CMP known from the southeastern Atlantic Ocean. Uranium-series dating revealed a short but intense pulse in mound formation during the early to mid-Holocene. Coral proliferation during this period was potentially supported by slightly enhanced dissolved oxygen concentrations compared to the present Benguela oxygen minimum zone (OMZ). The subsequent mid-Holocene strengthening of the Benguela Upwelling System and a simultaneous northward migration of the Angola-Benguela Front resulted in an intensification of the OMZ that caused the sudden local extinction of the Namibian corals and prevented their reoccurrence until today.
    Type of Medium: Online Resource
    ISSN: 0091-7613 , 1943-2682
    Language: English
    Publisher: Geological Society of America
    Publication Date: 2019
    detail.hit.zdb_id: 184929-3
    detail.hit.zdb_id: 2041152-2
    SSG: 13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Biogeosciences, Copernicus GmbH, Vol. 16, No. 22 ( 2019-11-15), p. 4337-4356
    Abstract: Abstract. Thriving benthic communities were observed in the oxygen minimum zones along the southwestern African margin. On the Namibian margin, fossil cold-water coral mounds were overgrown by sponges and bryozoans, while the Angolan margin was characterized by cold-water coral mounds covered by a living coral reef. To explore why benthic communities differ in both areas, present-day environmental conditions were assessed, using conductivity–temperature–depth (CTD) transects and bottom landers to investigate spatial and temporal variations of environmental properties. Near-bottom measurements recorded low dissolved oxygen concentrations on the Namibian margin of 0–0.15 mL L−1 (≜0 %–9 % saturation) and on the Angolan margin of 0.5–1.5 mL L−1 (≜7 %–18 % saturation), which were associated with relatively high temperatures (11.8–13.2 ∘C and 6.4–12.6 ∘C, respectively). Semidiurnal barotropic tides were found to interact with the margin topography producing internal waves. These tidal movements deliver water with more suitable characteristics to the benthic communities from below and above the zone of low oxygen. Concurrently, the delivery of a high quantity and quality of organic matter was observed, being an important food source for the benthic fauna. On the Namibian margin, organic matter originated directly from the surface productive zone, whereas on the Angolan margin the geochemical signature of organic matter suggested an additional mechanism of food supply. A nepheloid layer observed above the cold-water corals may constitute a reservoir of organic matter, facilitating a constant supply of food particles by tidal mixing. Our data suggest that the benthic fauna on the Namibian margin, as well as the cold-water coral communities on the Angolan margin, may compensate for unfavorable conditions of low oxygen levels and high temperatures with enhanced availability of food, while anoxic conditions on the Namibian margin are at present a limiting factor for cold-water coral growth. This study provides an example of how benthic ecosystems cope with such extreme environmental conditions since it is expected that oxygen minimum zones will expand in the future due to anthropogenic activities.
    Type of Medium: Online Resource
    ISSN: 1726-4189
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2019
    detail.hit.zdb_id: 2158181-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...