GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    MDPI AG ; 2022
    In:  International Journal of Molecular Sciences Vol. 23, No. 9 ( 2022-04-28), p. 4893-
    In: International Journal of Molecular Sciences, MDPI AG, Vol. 23, No. 9 ( 2022-04-28), p. 4893-
    Abstract: Isotopic analyses of plant samples are now of considerable importance for food certification and plant physiology. In fact, the natural nitrogen isotope composition (δ15N) is extremely useful to examine metabolic pathways of N nutrition involving isotope fractionations. However, δ15N analysis of amino acids is not straightforward and involves specific derivatization procedures to yield volatile derivatives that can be analysed by gas chromatography coupled to isotope ratio mass spectrometry (GC-C-IRMS). Derivatizations other than trimethylsilylation are commonly used since they are believed to be more reliable and accurate. Their major drawback is that they are not associated with metabolite databases allowing identification of derivatives and by-products. Here, we revisit the potential of trimethylsilylated derivatives via concurrent analysis of δ15N and exact mass GC-MS of plant seed protein samples, allowing facile identification of derivatives using a database used for metabolomics. When multiple silylated derivatives of several amino acids are accounted for, there is a good agreement between theoretical and observed N mole fractions, and δ15N values are satisfactory, with little fractionation during derivatization. Overall, this technique may be suitable for compound-specific δ15N analysis, with pros and cons.
    Type of Medium: Online Resource
    ISSN: 1422-0067
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2019364-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Plant, Cell & Environment, Wiley, Vol. 44, No. 2 ( 2021-02), p. 445-457
    Abstract: It is generally assumed that metabolic pathways other than carboxylation and oxygenation are altered minimally by changing CO 2 and O 2 conditions during gas exchange. Using isotope‐assisted metabolomics analyses, we show that manipulating CO 2 and O 2 has a broad effect on different major metabolic pathways, and this must be taken into to better interpret variations in carboxylation (anaplerotic fixation) or apparent day respiration.
    Type of Medium: Online Resource
    ISSN: 0140-7791 , 1365-3040
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2021
    detail.hit.zdb_id: 391893-2
    detail.hit.zdb_id: 2020843-1
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    MDPI AG ; 2023
    In:  International Journal of Molecular Sciences Vol. 24, No. 8 ( 2023-04-07), p. 6917-
    In: International Journal of Molecular Sciences, MDPI AG, Vol. 24, No. 8 ( 2023-04-07), p. 6917-
    Abstract: Phloem sap transport is essential for plant nutrition and development since it mediates redistribution of nutrients, metabolites and signaling molecules. However, its biochemical composition is not so well-known because phloem sap sampling is difficult and does not always allow extensive chemical analysis. In the past years, efforts have been devoted to metabolomics analyses of phloem sap using either liquid chromatography or gas chromatography coupled with mass spectrometry. Phloem sap metabolomics is of importance to understand how metabolites can be exchanged between plant organs and how metabolite allocation may impact plant growth and development. Here, we provide an overview of our current knowledge of phloem sap metabolome and physiological information obtained therefrom. Although metabolomics analyses of phloem sap are still not numerous, they show that metabolites present in sap are not just sugars and amino acids but that many more metabolic pathways are represented. They further suggest that metabolite exchange between source and sink organs is a general phenomenon, offering opportunities for metabolic cycles at the whole-plant scale. Such cycles reflect metabolic interdependence of plant organs and shoot–root coordination of plant growth and development.
    Type of Medium: Online Resource
    ISSN: 1422-0067
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2019364-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Plant, Cell & Environment, Wiley, Vol. 45, No. 7 ( 2022-07), p. 2145-2157
    Abstract: Finding isotope‐based markers of optimal carbon partitioning to grains would be extremely useful since isotope analyses are inexpensive and can be performed routinely at high throughput. Here, we show there is a linear relationship between the apparent isotope discrimination between leaves and grain (denoted as Δδ corr ), and the respiration use efficiency‐to‐harvest index ratio. 13 C natural abundance in grains has thus some potential to help finding genotypes with better carbon allocation properties and assisting current wheat breeding technologies.
    Type of Medium: Online Resource
    ISSN: 0140-7791 , 1365-3040
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2022
    detail.hit.zdb_id: 391893-2
    detail.hit.zdb_id: 2020843-1
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Wiley ; 2022
    In:  Plant, Cell & Environment Vol. 45, No. 10 ( 2022-10), p. 3171-3183
    In: Plant, Cell & Environment, Wiley, Vol. 45, No. 10 ( 2022-10), p. 3171-3183
    Abstract: Plant metabolomics has been used widely in plant physiology, in particular to analyse metabolic responses to environmental parameters. Derivatization (via trimethylsilylation and methoximation) followed by GC‐MS metabolic profiling is a major technique to quantify low molecular weight, common metabolites of primary carbon, sulphur and nitrogen metabolism. There are now excellent opportunities for new generation analyses, using high resolution, exact mass GC‐MS spectrometers that are progressively becoming relatively cheap. However, exact mass GC‐MS analyses for routine metabolic profiling are not common, since there is no dedicated available database. Also, exact mass GC‐MS is usually dedicated to structural resolution of targeted secondary metabolites. Here, we present a curated database for exact mass metabolic profiling (made of 336 analytes, 1064 characteristic exact mass fragments) focused on molecules of primary metabolism. We show advantages of exact mass analyses, in particular to resolve isotopic patterns, localise S‐containing metabolites, and avoid identification errors when analytes have common nominal mass peaks in their spectrum. We provide a practical example using leaves of different Arabidopsis ecotypes and show how exact mass GC‐MS analysis can be applied to plant samples and identify metabolic profiles.
    Type of Medium: Online Resource
    ISSN: 0140-7791 , 1365-3040
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2022
    detail.hit.zdb_id: 391893-2
    detail.hit.zdb_id: 2020843-1
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Wiley ; 2024
    In:  Plant, Cell & Environment Vol. 47, No. 6 ( 2024-06), p. 2146-2162
    In: Plant, Cell & Environment, Wiley, Vol. 47, No. 6 ( 2024-06), p. 2146-2162
    Abstract: Day respiration ( R d ) is the metabolic, nonphotorespiratory process by which illuminated leaves liberate CO 2 during photosynthesis. It is often assumed that day respiratory CO 2 release just reflects ‘ordinary’ catabolism (glycolysis and Krebs ‘cycle’). Using isotope pulse‐chase, we show that leaf day respiration involves several CO 2 ‐producing reactions and is fed by different carbon sources, including stored carbon disconnected from current photosynthates.
    Type of Medium: Online Resource
    ISSN: 0140-7791 , 1365-3040
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2024
    detail.hit.zdb_id: 391893-2
    detail.hit.zdb_id: 2020843-1
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    MDPI AG ; 2022
    In:  International Journal of Molecular Sciences Vol. 23, No. 15 ( 2022-07-30), p. 8484-
    In: International Journal of Molecular Sciences, MDPI AG, Vol. 23, No. 15 ( 2022-07-30), p. 8484-
    Abstract: Seed size is often considered to be an important trait for seed quality, i.e., vigour and germination performance. It is believed that seed size reflects the quantity of reserve material and thus the C and N sources available for post-germinative processes. However, mechanisms linking seed size and quality are poorly documented. In particular, specific metabolic changes when seed size varies are not well-known. To gain insight into this aspect, we examined seed size and composition across different accessions of barrel medic (Medicago truncatula Gaertn.) from the genetic core collection. We conducted multi-elemental analyses and isotope measurements, as well as exact mass GC–MS metabolomics. There was a systematic increase in N content (+0.17% N mg−1) and a decrease in H content (–0.14% H mg−1) with seed size, reflecting lower lipid and higher S-poor protein quantity. There was also a decrease in 2H natural abundance (δ2H), due to the lower prevalence of 2H-enriched lipid hydrogen atoms that underwent isotopic exchange with water during seed development. Metabolomics showed that seed size correlates with free amino acid and hexoses content, and anticorrelates with amino acid degradation products, disaccharides, malic acid and free fatty acids. All accessions followed the same trend, with insignificant differences in metabolic properties between them. Our results show that there is no general, proportional increase in metabolite pools with seed size. Seed size appears to be determined by metabolic balance (between sugar and amino acid degradation vs. utilisation for storage), which is in turn likely determined by phloem source metabolite delivery during seed development.
    Type of Medium: Online Resource
    ISSN: 1422-0067
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2019364-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...