GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Journal of Geophysical Research: Oceans, American Geophysical Union (AGU), Vol. 117, No. C9 ( 2012-09), p. n/a-n/a
    Type of Medium: Online Resource
    ISSN: 0148-0227
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2012
    detail.hit.zdb_id: 2033040-6
    detail.hit.zdb_id: 3094104-0
    detail.hit.zdb_id: 2130824-X
    detail.hit.zdb_id: 2016813-5
    detail.hit.zdb_id: 2016810-X
    detail.hit.zdb_id: 2403298-0
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 161666-3
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 2969341-X
    detail.hit.zdb_id: 161665-1
    detail.hit.zdb_id: 3094268-8
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 3094181-7
    detail.hit.zdb_id: 3094219-6
    detail.hit.zdb_id: 3094167-2
    detail.hit.zdb_id: 2220777-6
    detail.hit.zdb_id: 3094197-0
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Meteorological Society ; 2010
    In:  Journal of Physical Oceanography Vol. 40, No. 8 ( 2010-08-01), p. 1784-1801
    In: Journal of Physical Oceanography, American Meteorological Society, Vol. 40, No. 8 ( 2010-08-01), p. 1784-1801
    Abstract: Changes in the ventilation of the oxygen minimum zone (OMZ) of the tropical North Atlantic are studied using oceanographic data from 18 research cruises carried out between 28.5° and 23°W during 1999–2008 as well as historical data referring to the period 1972–85. In the core of the OMZ at about 400-m depth, a highly significant oxygen decrease of about 15 μmol kg−1 is found between the two periods. During the same time interval, the salinity at the oxygen minimum increased by about 0.1. Above the core of the OMZ, within the central water layer, oxygen decreased too, but salinity changed only slightly or even decreased. The scatter in the local oxygen–salinity relations decreased from the earlier to the later period suggesting a reduced filamentation due to mesoscale eddies and/or zonal jets acting on the background gradients. Here it is suggested that latitudinally alternating zonal jets with observed amplitudes of a few centimeters per second in the depth range of the OMZ contribute to the ventilation of the OMZ. A conceptual model of the ventilation of the OMZ is used to corroborate the hypothesis that changes in the strength of zonal jets affect mean oxygen levels in the OMZ. According to the model, a weakening of zonal jets, which is in general agreement with observed hydrographic evidences, is associated with a reduction of the mean oxygen levels that could significantly contribute to the observed deoxygenation of the North Atlantic OMZ.
    Type of Medium: Online Resource
    ISSN: 1520-0485 , 0022-3670
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2010
    detail.hit.zdb_id: 2042184-9
    detail.hit.zdb_id: 184162-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Elsevier BV ; 1998
    In:  Deep Sea Research Part I: Oceanographic Research Papers Vol. 45, No. 4-5 ( 1998-4), p. 507-527
    In: Deep Sea Research Part I: Oceanographic Research Papers, Elsevier BV, Vol. 45, No. 4-5 ( 1998-4), p. 507-527
    Type of Medium: Online Resource
    ISSN: 0967-0637
    Language: English
    Publisher: Elsevier BV
    Publication Date: 1998
    detail.hit.zdb_id: 1500309-7
    detail.hit.zdb_id: 1146810-5
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Copernicus GmbH ; 2016
    In:  Ocean Science Vol. 12, No. 4 ( 2016-07-04), p. 861-873
    In: Ocean Science, Copernicus GmbH, Vol. 12, No. 4 ( 2016-07-04), p. 861-873
    Abstract: Abstract. A strong El Niño developed in early 2015. Measurements from a research cruise on the R/V Sonne in October 2015 near the Equator east of the Galapagos Islands and off the shelf of Peru are used to investigate changes related to El Niño in the upper ocean in comparison with earlier cruises in this region. At the Equator at 85°30′ W, a clear temperature increase leading to lower densities in the upper 350 m had developed in October 2015, despite a concurrent salinity increase from 40 to 350 m. Lower nutrient concentrations were also present in the upper 200 m, and higher oxygen concentrations were observed between 40 and 130 m. In the equatorial current field, the Equatorial Undercurrent (EUC) east of the Galapagos Islands almost disappeared in October 2015, with a transport of only 0.02 Sv in the equatorial channel between 1° S and 1° N, and a weak current band of 0.78 Sv located between 1 and 2°30′ S. Such near-disappearances of the EUC in the eastern Pacific seem to occur only during strong El Niño events. Off the Peruvian shelf at  ∼  9° S, characteristics of upwelling were different as warm, saline, and oxygen-rich water was upwelled. At  ∼  12,  ∼  14, and  ∼  16° S, the upwelling of cold, low-salinity, and oxygen-poor water was still active at the easternmost stations of these three sections, while further west on these sections a transition to El Niño conditions appeared. Although from early 2015 the El Niño was strong, the October measurements in the eastern tropical Pacific only showed developing El Niño water mass distributions. In particular, the oxygen distribution indicated the ongoing transition from “typical” to El Niño conditions progressing southward along the Peruvian shelf.
    Type of Medium: Online Resource
    ISSN: 1812-0792
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2016
    detail.hit.zdb_id: 2183769-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...