GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Jiang, Tingting  (269)
  • 1
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 77, No. 13_Supplement ( 2017-07-01), p. 5354-5354
    Abstract: Solid tumor profiling assays need to deliver accurate and consistent results in the face of decreased quality and quantity of nucleic acids extracted from FFPE samples. Understanding the performance of a particular solid tumor profiling assay with FFPE tissue is critical, but with limited and non-renewable samples available to most assay-developers, the sample number used to understand this performance can be small. TruSight® Tumor 1701 is an Illumina-developed comprehensive solid tumor profiling panel targeting 170 genes using DNA and RNA from FFPE samples. In order to confirm the robustness of the assay with FFPE tissue, 2310 FFPE samples were brought in-house and evaluated. Quantity of both DNA and RNA extraction were determined by various methods, including AccuClear™, Qubit™ and Quantifluor® fluourometric assays. Overall, & gt;95% of the samples achieved the minimum concentrations required for the TruSight® Tumor 170 assay. As a surrogate for DNA quality, we measured the amplification potential of the nucleic acid by assessing a ΔCq value using quantitative PCR after normalization to a fixed input mass. To assess RNA quality, we used the DV200 metric, which measures the percentage of RNA fragments & gt;200 nucleotides in length. We examined ΔCq and DV200 values across different tissues and didn’t find a significant difference between tissues. Finally, we assessed the ability of samples to pass the sample quality control (QC) metrics in the TruSight® Tumor 170 assay. These QC metrics ensure accurate variant calling, with a sensitivity and specificity of ≥95%. We found that samples that had a ΔCq value of ≤5 and a DV200 value of ≥20 achieved a QC success rate above 95%. This data highlights the need for further investigation into the methods for extraction, quantification and quality assessment of nucleic acids for solid tumor profiling and underscores the robustness of TruSight® Tumor 170 with FFPE samples. 1 For Research Use Only. Not for use in diagnostic procedures. Citation Format: Jennifer S. LoCoco, Li Teng, Danny Chou, Xiao Chen, Byron Luo, Jennifer Sayne, Ashley Adams, Naseem Ajili, Cody Chivers, Beena Murthy, Laurel Ball, Allan Castaneda, Katie Clark, Brian Crain, Anthony Daulo, Manh Do, Tingting Du, Sarah Dumm, Yonmee Han, Michael Havern, Chia-Ling Hsieh, Tingting Jiang, Suzanne Johansen, Scott Lang, Rachel Liang, Jaime McLean, Yousef Nassiri, Austin Purdy, Jason Rostron, Jennifer Silhavy, June Snedecor, Natasha Talago, Li Teng, Kevin Wu, Chen Zhao, Clare Zlatkov, Ali Kuraishy, Karen Gutekunst, Sohela De Rozieres, Matthew Friedenberg, Han-Yu Chuang, Anne C. Jager. Evaluation of quantity, quality and performance with the TruSight® Tumor 170 solid tumor profiling assay of nucleic acids extracted from formalin-fixed paraffin-embedded (FFPE) tissue sections [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2017; 2017 Apr 1-5; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2017;77(13 Suppl):Abstract nr 5354. doi:10.1158/1538-7445.AM2017-5354
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2017
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 77, No. 13_Supplement ( 2017-07-01), p. 3732-3732
    Abstract: Expanding the paradigm of solid tumor profiling from single-gene testing to comprehensive panels presents many challenges. One such challenges is the ability of these panels to detect genetic alterations from FFPE samples, where the DNA is of low abundance and often heavily compromised. Despite these challenges, next-generation sequencing (NGS) offers the ability to assess multiple variants simultaneously in an ever-expanding list of relevant tumor genes. To that end, Illumina developed a comprehensive, hybrid capture-based NGS assay targeting 170 key cancer genes that is FFPE optimized. The assay consists of a DNA workflow for the identification of single and multiple nucleotide variants (SNVs, MNVs), small insertions and deletions (indels), gene amplifications, as well as a RNA workflow for the identification of splice variants and gene fusions. Following sequencing on the NextSeq® or HiSeq® instruments, the analytical pipeline initiates variant calling. The DNA aligner and variant callers were first optimized against the simulated read data from & gt;40,000 COSMIC[1] mutations reported in the exons of the 170 genes. To reduce false positive variant calling due to systematic errors, each variant call was evaluated against its locus specific background error distribution. This distribution was compiled from a panel of FFPE normal samples and was also used to normalize against systematic bias in read coverage to increase the accuracy of amplification calling. Furthermore, gene amplification calling was improved by the addition of enhancer probes to the hybrid capture pool. The analytical sensitivity and specificity of TruSight® Tumor 170* was assessed on a large collection of FFPE samples and reference material. A panel of 72 cancer samples, including multiple tissue types, reference standards, and cell line and FFPE mixes were used to evaluate the limit of detection. The samples contained 533 SNVs, 80 indels including deletions up to 30 base pairs and insertions up to 31 base pairs, 4 MNVs, and 31 gene amplifications, characterized by orthogonal testing methods. Using 40 ng DNA input, detection sensitivity of the & gt;1000 variants (including replicates) tested at variant allele frequencies down to ~5% was at 99.6%, while detection sensitivity of gene amplifications as low as 1.45x to 2.2x was at 98%. For limit of blank samples, a panel of 24 normal samples was used. Again using 40 ng DNA input, we show & gt;99% specificity for small variant calling and & gt;95% specificity for gene amplification calling. These data demonstrates the TruSight® Tumor 170 is able to detect multiple variant types within a single sample at low nucleic acid input, while exhibiting high analytical sensitivity and specificity for low allele fraction detection. [1] Forbes, et al. (2015) *For Research Use Only. Not for use in diagnostic procedures. Citation Format: Danny Chou, Xiao Chen, Austin Purdy, Li Teng, Byron Luo, Chen Zhao, Laurel Ball, Allan Castaneda, Katie Clark, Brian Crain, Anthony Daulo, Manh Do, Tingting Du, Sarah Dumm, Yonmee Han, Michael Havern, Chia-Ling Hsieh, Tingting Jiang, Suzanne Johansen, Scott Lang, Rachel Liang, Jennifer S. LoCoco, Jaime McLean, Yousef Nassiri, Jason Rostron, Jennifer Silhavy, June Snedecor, Natasha Talago, Kevin Wu, Clare Zlatkov, Ali Kuraishy, Karen Gutekunst, Sohela De Rozieres, Matthew Friedenberg, Han-Yu Chuang, Anne C. Jager. Analytical performance of TruSight® Tumor 170 on small nucleotide variations and gene amplifications using DNA from formalin-fixed, paraffin-embedded (FFPE) solid tumor samples [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2017; 2017 Apr 1-5; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2017;77(13 Suppl):Abstract nr 3732. doi:10.1158/1538-7445.AM2017-3732
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2017
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Spandidos Publications ; 2020
    In:  Experimental and Therapeutic Medicine ( 2020-07-13)
    In: Experimental and Therapeutic Medicine, Spandidos Publications, ( 2020-07-13)
    Type of Medium: Online Resource
    ISSN: 1792-0981 , 1792-1015
    Language: Unknown
    Publisher: Spandidos Publications
    Publication Date: 2020
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Cell, Elsevier BV, Vol. 186, No. 4 ( 2023-02), p. 850-863.e16
    Type of Medium: Online Resource
    ISSN: 0092-8674
    RVK:
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2023
    detail.hit.zdb_id: 187009-9
    detail.hit.zdb_id: 2001951-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 77, No. 13_Supplement ( 2017-07-01), p. 565-565
    Abstract: Recent studies have highlighted the importance of gene fusions and splice variants in solid tumor profiling1. Next-generation sequencing can be an effective means of detecting these alterations in FFPE samples using RNA rather than DNA, as a single chimeric RNA transcript could result from numerous alterations in DNA2. To that end, Illumina developed TruSight® Tumor 1703, a comprehensive, hybrid capture-based NGS assay targeting 170 key cancer genes. Along with a DNA workflow, the assay includes a RNA workflow for the identification of splice variants and gene fusions. Following sequencing on the NextSeq® or HiSeq® instruments, TruSight® Tumor 170 offers an analytical pipeline which initiates variant calling. These algorithms were first optimized against the simulated read data from & gt;350 fusions and splice variants reported in the RNA content of the gene panel. A hybrid approach of read alignment and assembly was used to enhance the fusion calling sensitivity. Deliberate filters were designed to reduce false positive calling from sequence homologs, polymerase read-through, or FFPE artifacts. For splice variant calling, a panel of FFPE non-cancerous samples were used to capture false positive mutation calls. With endogenous RNA splicing in cellular physiology, exon-boundary probes were added in the hybrid capture to enhance enrichment efficiency. To the best of our knowledge, there is not yet a standard definition for the limit of detection (LoD) in detecting gene fusions and splice variants from NGS data. We propose to define the LoD of a fusion calling and splice variant NGS panel as the lowest molecule count of a chimeric transcript that could be reliably detected with a sufficient number of supporting sequencing reads. To determine the LoD of TruSight® Tumor 170 using this definition, we mixed cell lines expressing a panel of known fusions and splice variants to measure the copy number of each chimeric transcript. Using these samples we examined the ability of the assay to confidently detect the alterations using 40 ng of RNA input. To demonstrate the analytical sensitivity and specificity of this NGS based assay, we compiled a panel of 49 mixed samples and validated the molecule count to be near the LoD of 5 copies per ng RNA input by PCR. The sensitivity was & gt;98% for fusions and 100% for splice variants. For understanding the limit of blank (LoB) of the assay, another panel of 40 samples not harboring fusions and splice variants was also assessed by TruSight® Tumor 170. These samples demonstrated a ~97% specificity for fusion calling and & gt;95% specificity for splice variant calling. These results indicate that the TruSight® Tumor 170 panel analysis can identify lowly expressed fusions and splice variants from a small amount of compromised RNA from solid tumor samples at high analytical sensitivity and specificity. 1 Klijn et al. (2015) 2 Maher et al. (2009) 3 For Research Use Only. Citation Format: Tingting Du, June Snedecor, Jennifer S. LoCoco, Xiao Chen, Laurel Ball, Allan Castaneda, Danny Chou, Katie Clark, Brian Crain, Anthony Daulo, Manh Do, Sarah Dumm, Yonmee Han, Mike Havern, Chia-Ling Hsieh, Tingting Jiang, Suzanne Johansen, Scott Lang, Rachel Liang, Jaime McLean, Yousef Nassiri, Austin Purdy, Jason Rostron, Jennifer Silhavy, Natasha Talago, Li Teng, Kevin Wu, Clare Zlatkov, Chen Zhao, Ali Kuraishy, Karen Gutekunst, Sohela De Rozieres, Matthew Friedenberg, Anne C. Jager, Han-Yu Chuang. Analytical performance of TruSight® Tumor 170 in the detection of gene fusions and splice variants using RNA from formalin-fixed, paraffin-embedded (FFPE) solid tumor samples [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2017; 2017 Apr 1-5; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2017;77(13 Suppl):Abstract nr 565. doi:10.1158/1538-7445.AM2017-565
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2017
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Frontiers in Oncology, Frontiers Media SA, Vol. 12 ( 2022-2-10)
    Abstract: Epidermal growth factor receptor (EGFR) inhibitors are widely used to treat various types of cancers such as non-small cell lung cancer, head and neck cancer, breast cancer, pancreatic cancer. Adverse reactions such as skin toxicity, interstitial lung disease, hepatotoxicity, ocular toxicity, hypomagnesemia, stomatitis, and diarrhea may occur during treatment. Because the EGFR signaling pathway is important for maintaining normal physiological skin function. Adverse skin reactions occurred in up to 90% of cancer patients treated with EGFR inhibitors, including common skin toxicities (such as papulopustular exanthemas, paronychia, hair changes) and rare fatal skin toxicities (e.g., Stevens–Johnson syndrome, toxic epidermal necrolysis, acute generalized exanthematous pustulosis). This has led to the dose reduction or discontinuation of EGFR inhibitors in the treatment of cancer. Recently, progress has been made about research on the skin toxicity of EGFR inhibitors. Here, we summarize the mechanism of skin toxicity caused by EGFR inhibitors, measures to prevent severe fatal skin toxicity, and provide reference for medical staff how to give care and treatment after adverse skin reactions.
    Type of Medium: Online Resource
    ISSN: 2234-943X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2022
    detail.hit.zdb_id: 2649216-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Therapeutic Advances in Drug Safety, SAGE Publications, Vol. 14 ( 2023-01)
    Abstract: Plain language summary Pharmacovigilance (PV) in special populations: opportunities and challenges Why is it important to implement PV in special populations? Due to the particularity of physiological functions, the special population (children, pregnant women, and the elderly) are more susceptible to adverse drug reactions (ADRs) and have more drug safety problems. The implementation of PV is helpful for the detection of safety risks throughout the life cycle of drugs, so that healthcare professionals (HCPs) can take early measures to reduce the drug use risks of patients. What are the problems to implement PV for special populations? Many countries have implemented a PV system. However, PV policies and systems for the special population are not complete in various countries, or no independent PV system for the special population has been set up. What does this article add to our knowledge? This article discusses the PV systems of the European Union, the United States, and China with special focus on basic physiological characteristics, use of drugs, and the implementation of PV with respect to children, pregnant women, and the elderly. Focus on these problems are of great importance for formulating a more complete drug management scheme in the special population and can provide a reference for the development of follow-up policies and improvement of existing policies.
    Type of Medium: Online Resource
    ISSN: 2042-0986 , 2042-0994
    Language: English
    Publisher: SAGE Publications
    Publication Date: 2023
    detail.hit.zdb_id: 2583589-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Frontiers Media SA ; 2022
    In:  Frontiers in Pharmacology Vol. 13 ( 2022-12-1)
    In: Frontiers in Pharmacology, Frontiers Media SA, Vol. 13 ( 2022-12-1)
    Abstract: Objective: In recent years, the emergence of immunomodulatory drugs (IMiDs) has significantly improved clinical outcomes in patients with multiple myeloma (MM); however, serious adverse events (AEs) have hindered their safe clinical application. This study aimed to characterize the safety profiles and differences in IMiDs through a disproportionality analysis using the U.S. Food and Drug Administration Adverse Event Reporting System (FAERS), a post-marketing surveillance database. Methods: This study filtered reports of thalidomide, lenalidomide, and pomalidomide as primary suspect drugs in FAERS files from January 2013 to December 2021. AEs in the reports were retrieved according to the preferred terms (PTs) of the Medical Dictionary for Regulatory Activities. Furthermore, we detected safety signals using the reporting odds ratio (ROR), proportional reporting ratio (PRR), and Bayesian belief propagation neural network (BCPNN). When all three algorithms showed an association between the target drug and the AE, a positive signal was generated. Results: We extracted 9,968 thalidomide, 231,926 lenalidomide, and 55,066 pomalidomide AE reports. AEs were more common in male patients and in those & gt;44 years old. Important safety signals were detected based on the system organ classes (SOC), including thalidomide (cardiac disorders: ROR, 2.87; PRR, 2.79; IC 1.22), lenalidomide (gastrointestinal disorders: ROR, 2.38; PRR, 2.27; IC 0.75), and pomalidomide (respiratory, thoracic, and mediastinal disorders: ROR, 2.14; PRR, 2.09; IC 0.85). Within the PT level, we identified novel risk signals: the thalidomide-induced second primary malignancy (SPM) signal was significant; lenalidomide reduced the success rate of hematopoietic stem cell collection; and three IMiDs may cause human chorionic gonadotropin increase, but this needs to be proven by clinical data. Pneumonia, sepsis, and renal failure are common risk factors for death due to IMiDs. Compared with thalidomide and lenalidomide, pomalidomide has a lower risk of venous thromboembolism (VTE) and is beneficial to patients with renal insufficiency. Conclusion: Mining data from FAERS resulted in novel AE signals, including adenocarcinoma of colon, harvest failure of blood stem cells, and increased levels of human chorionic gonadotropin. Further investigation is required to verify the significance of these signals. Moreover, IMiDs showed differences in safety reports, which should be emphasized by clinicians.
    Type of Medium: Online Resource
    ISSN: 1663-9812
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2022
    detail.hit.zdb_id: 2587355-6
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Frontiers in Bioscience-Landmark, IMR Press, Vol. 27, No. 11 ( 2022-11-25), p. 313-
    Type of Medium: Online Resource
    ISSN: 2768-6701
    Language: English
    Publisher: IMR Press
    Publication Date: 2022
    detail.hit.zdb_id: 2704569-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Therapeutic Advances in Drug Safety, SAGE Publications, Vol. 15 ( 2024-01)
    Abstract: Plain language summary A study on drug-induced interstitial lung disease Introduction: The Food and Drug Administration (FDA) Adverse Event Reporting System (FAERS) database is the largest public database for spontaneous reporting of adverse events, any undesirable experiences that occur while taking a medication. The FDA designed the FAERS database to allow them to track the safety of drugs once they are released on the market. This study aims to explore drug-induced interstitial lung disease (DILD) reporting trends, demographic characteristics, most commonly reported drugs, and high strength of association drugs using the FAERS database. Methods: We retrieved the term ‘interstitial lung disease’ to extract DILD reports in the FAERS database from 2004 to 2021. Then, we not only counted basic patient information, including age, gender, and reporting country, but also analyzed the drug class, the reporting frequency of drug, and the degree of relevance. Results: We identified a total of 32,821 DILD reports. DILD reports had a persistent increase from 2004 to 2021. The top three drug classes related to DILD in the FAERS were antineoplastic, cardiovascular and antirheumatic agents. The top three reported drugs associated with DILD were methotrexate, doxorubicin, and pembrolizumab. The top three drugs with the highest strength of association were fam-trastuzumab deruxtecan-nxki, ramucirumab, and eribulin. Various countries have significant differences in drugs related to DILD. Conclusion: By analyzing data from the FAERS database, we identified the top drugs, drug classes, and some unexpected drugs without DILD in the labels. Our findings provide additional insight into DILD to inform clinicians to enhance monitor related to drugs of potential importance.
    Type of Medium: Online Resource
    ISSN: 2042-0986 , 2042-0994
    Language: English
    Publisher: SAGE Publications
    Publication Date: 2024
    detail.hit.zdb_id: 2583589-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...