GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Geology, Geological Society of America, Vol. 48, No. 6 ( 2020-06-01), p. 589-593
    Abstract: Studies of paleocommunities and trophic webs assume that multispecies assemblages consist of species that coexisted in the same habitat over the duration of time averaging. However, even species with similar durability can differ in age within a single fossil assemblage. Here, we tested whether skeletal remains of different phyla and trophic guilds, the most abundant infaunal bivalve shells and nektobenthic fish otoliths, differed in radiocarbon age in surficial sediments along a depth gradient from 10 to 40 m on the warm-temperate Israeli shelf, and we modeled their dynamics of taphonomic loss. We found that, in spite of the higher potential of fishes for out-of-habitat transport after death, differences in age structure within depths were smaller by almost an order of magnitude than differences between depths. Shell and otolith assemblages underwent depth-specific burial pathways independent of taxon identity, generating death assemblages with comparable time averaging, and supporting the assumption of temporal and spatial co-occurrence of mollusks and fishes.
    Type of Medium: Online Resource
    ISSN: 0091-7613 , 1943-2682
    Language: English
    Publisher: Geological Society of America
    Publication Date: 2020
    detail.hit.zdb_id: 184929-3
    detail.hit.zdb_id: 2041152-2
    SSG: 13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Geological Society of London ; 2023
    In:  Geological Society, London, Special Publications Vol. 529, No. 1 ( 2023-07-03), p. 41-48
    In: Geological Society, London, Special Publications, Geological Society of London, Vol. 529, No. 1 ( 2023-07-03), p. 41-48
    Abstract: Death assemblages (DAs) are increasingly recognized as a valuable source to reconstruct past ecological baselines, due to the accumulation of skeletal material of non-contemporaneous cohorts. We here quantify the age and time-averaging of DAs on shallow subtidal (5–25 m) rocky substrates and in meadows of Posidonia oceanica in the eastern Mediterranean. We show that such DAs are very young – median ages 9–56 years – with limited time-averaging, one to two orders of magnitude less than on even nearby soft substrates. On rocky substrates, out-of-habitat transport is likely the main cause of loss of older shells. In Posidonia oceanica meadows, the root and rhizome system creates a dense structure – the matte – that quickly entangles and buries shells and limits the potential for bioturbation. The matte is, however, a peculiar feature of Posidonia oceanica , and age and time-averaging in meadows of other seagrass species may be different. The young age of DAs in these habitats requires a careful consideration of their appropriateness as baselines. The large difference in DA age between soft substrates, subject to numerous studies, and hard and seagrass substrates, rarely inspected with geochronological techniques, implies that DA dating is important for studies aiming at using DAs as baselines.
    Type of Medium: Online Resource
    ISSN: 0305-8719 , 2041-4927
    Language: English
    Publisher: Geological Society of London
    Publication Date: 2023
    detail.hit.zdb_id: 2478172-1
    detail.hit.zdb_id: 196249-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    The Royal Society ; 2021
    In:  Proceedings of the Royal Society B: Biological Sciences Vol. 288, No. 1942 ( 2021-01-13), p. 20202469-
    In: Proceedings of the Royal Society B: Biological Sciences, The Royal Society, Vol. 288, No. 1942 ( 2021-01-13), p. 20202469-
    Abstract: Global warming causes the poleward shift of the trailing edges of marine ectotherm species distributions. In the semi-enclosed Mediterranean Sea, continental masses and oceanographic barriers do not allow natural connectivity with thermophilic species pools: as trailing edges retreat, a net diversity loss occurs. We quantify this loss on the Israeli shelf, among the warmest areas in the Mediterranean, by comparing current native molluscan richness with the historical one obtained from surficial death assemblages. We recorded only 12% and 5% of historically present native species on shallow subtidal soft and hard substrates, respectively. This is the largest climate-driven regional-scale diversity loss in the oceans documented to date. By contrast, assemblages in the intertidal, more tolerant to climatic extremes, and in the cooler mesophotic zone show approximately 50% of the historical native richness. Importantly, approximately 60% of the recorded shallow subtidal native species do not reach reproductive size, making the shallow shelf a demographic sink. We predict that, as climate warms, this native biodiversity collapse will intensify and expand geographically, counteracted only by Indo-Pacific species entering from the Suez Canal. These assemblages, shaped by climate warming and biological invasions, give rise to a ‘novel ecosystem’ whose restoration to historical baselines is not achievable.
    Type of Medium: Online Resource
    ISSN: 0962-8452 , 1471-2954
    Language: English
    Publisher: The Royal Society
    Publication Date: 2021
    detail.hit.zdb_id: 1460975-7
    SSG: 12
    SSG: 25
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Radiocarbon, Cambridge University Press (CUP), Vol. 63, No. 2 ( 2021-04), p. 387-403
    Abstract: The direct carbonate procedure for accelerator mass spectrometry radiocarbon (AMS 14 C) dating of submilligram samples of biogenic carbonate without graphitization is becoming widely used in a variety of studies. We compare the results of 153 paired direct carbonate and standard graphite 14 C determinations on single specimens of an assortment of biogenic carbonates. A reduced major axis regression shows a strong relationship between direct carbonate and graphite percent Modern Carbon (pMC) values (m = 0.996; 95% CI [0.991–1.001]). An analysis of differences and a 95% confidence interval on pMC values reveals that there is no significant difference between direct carbonate and graphite pMC values for 76% of analyzed specimens, although variation in direct carbonate pMC is underestimated. The difference between the two methods is typically within 2 pMC, with 61% of direct carbonate pMC measurements being higher than their paired graphite counterpart. Of the 36 specimens that did yield significant differences, all but three missed the 95% significance threshold by 1.2 pMC or less. These results show that direct carbonate 14 C dating of biogenic carbonates is a cost-effective and efficient complement to standard graphite 14 C dating.
    Type of Medium: Online Resource
    ISSN: 0033-8222 , 1945-5755
    Language: English
    Publisher: Cambridge University Press (CUP)
    Publication Date: 2021
    detail.hit.zdb_id: 2028560-7
    SSG: 11
    SSG: 13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...