GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: ICES Journal of Marine Science, Oxford University Press (OUP), Vol. 80, No. 2 ( 2023-03-14), p. 243-257
    Abstract: Multispecies models have existed in a fisheries context since at least the 1970s, but despite much exploration, advancement, and consideration of multispecies models, there remain limited examples of their operational use in fishery management. Given that species and fleet interactions are inherently multispecies problems and the push towards ecosystem-based fisheries management, the lack of more regular operational use is both surprising and compelling. We identify impediments hampering the regular operational use of multispecies models and provide recommendations to address those impediments. These recommendations are: (1) engage stakeholders and managers early and often; (2) improve messaging and communication about the various uses of multispecies models; (3) move forward with multispecies management under current authorities while exploring more inclusive governance structures and flexible decision-making frameworks for handling tradeoffs; (4) evaluate when a multispecies modelling approach may be more appropriate; (5) tailor the multispecies model to a clearly defined purpose; (6) develop interdisciplinary solutions to promoting multispecies model applications; (7) make guidelines available for multispecies model review and application; and (8) ensure code and models are well documented and reproducible. These recommendations draw from a global assemblage of subject matter experts who participated in a workshop entitled “Multispecies Modeling Applications in Fisheries Management”.
    Type of Medium: Online Resource
    ISSN: 1054-3139 , 1095-9289
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2023
    detail.hit.zdb_id: 2463178-4
    detail.hit.zdb_id: 1468003-8
    detail.hit.zdb_id: 29056-7
    SSG: 12
    SSG: 21,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2019
    In:  ICES Journal of Marine Science Vol. 76, No. 6 ( 2019-12-01), p. 1524-1542
    In: ICES Journal of Marine Science, Oxford University Press (OUP), Vol. 76, No. 6 ( 2019-12-01), p. 1524-1542
    Abstract: US West Coast sablefish are economically valuable, with landings of 11.8 million pounds valued at over $31 million during 2016, making assessing and understanding the impact of climate change on the California Current (CC) stock a priority for (1) forecasting future stock productivity, and (2) testing the robustness of management strategies to climate impacts. Sablefish recruitment is related to large-scale climate forcing indexed by regionally correlated sea level (SL) and zooplankton communities that pelagic young-of-the-year sablefish feed upon. This study forecasts trends in future sablefish productivity using SL from Global Climate Models (GCMs) and explores the robustness of harvest control rules (HCRs) to climate driven changes in recruitment using management strategy evaluation (MSE). Future sablefish recruitment is likely to be similar to historical recruitment but may be less variable. Most GCMs suggest that decadal SL trends result in recruitments persisting at lower levels through about 2040 followed by higher levels that are more favorable for sablefish recruitment through 2060. Although this MSE suggests that spawning biomass and catches will decline, and then stabilize, into the future under both HCRs, the sablefish stock does not fall below the stock size that leads to fishery closures.
    Type of Medium: Online Resource
    ISSN: 1054-3139 , 1095-9289
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2019
    detail.hit.zdb_id: 2463178-4
    detail.hit.zdb_id: 1468003-8
    detail.hit.zdb_id: 29056-7
    SSG: 12
    SSG: 21,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: ICES Journal of Marine Science, Oxford University Press (OUP), Vol. 77, No. 1 ( 2020-01-01), p. 188-199
    Abstract: Fishing communities are increasingly required to adapt to environmentally driven changes in the availability of fish stocks. Here, we examined trends in the distribution and biomass of five commercial target species (dover sole, thornyheads, sablefish, lingcod, and petrale sole) on the US west coast to determine how their availability to fishing ports changed over 40 years. We show that the timing and magnitude of stock declines and recoveries are not experienced uniformly along the coast when they coincide with shifts in species distributions. For example, overall stock availability of sablefish was more stable in southern latitudes where a 40% regional decline in biomass was counterbalanced by a southward shift in distribution of & gt;200 km since 2003. Greater vessel mobility and larger areal extent of fish habitat along the continental shelf buffered northerly ports from latitudinal changes in stock availability. Landings were not consistently related to stock availability, suggesting that social, economic, and regulatory factors likely constrain or facilitate the capacity for fishers to adapt to changes in fish availability. Coupled social–ecological analyses such as the one presented here are important for defining community vulnerability to current and future changes in the availability of important marine species.
    Type of Medium: Online Resource
    ISSN: 1054-3139 , 1095-9289
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2020
    detail.hit.zdb_id: 2463178-4
    detail.hit.zdb_id: 1468003-8
    detail.hit.zdb_id: 29056-7
    SSG: 12
    SSG: 21,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: ICES Journal of Marine Science, Oxford University Press (OUP), ( 2024-05-16)
    Abstract: By incorporating trophic interactions and temperature-dependent bioenergetics, multi-species models such as CEATTLE (climate-enhanced age-based model with temperature-specific trophic linkages and energetics) are a step towards ecosystem-based stock assessment and management of high-value commercial species such as Pacific hake (Merluccius productus). Hake are generalist predators and previous studies in the California Current Ecosystem have determined that their diet consists of ∼30% cannibalism. We used CEATTLE to include cannibalism in a model of hake population dynamics and re-examined hake diet data to determine the proportion by age that can attributed to cannibalism. The proportion was highly variable, ranging between 0 and 80% of stomach contents by weight. When included in the CEATTLE model, the estimated spawning biomass, total biomass, and recruitment increased by 15, 23, and 58%, on average, relative to the single-species model, due to the estimation of time- and age-varying predation mortality, primarily for age-1 hake. The effects of cannibalism varied over time, with further increases in total biomass and recruitment resulting from the age structure of the population following large cohorts in 1980 and 1984. Results from the cannibalism model could be used to inform the estimation of time- and age-varying mortality in the single-species assessment and as a pathway for including ecosystem information in management through environmental and trophic drivers of variability in mortality.
    Type of Medium: Online Resource
    ISSN: 1054-3139 , 1095-9289
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2024
    detail.hit.zdb_id: 2463178-4
    detail.hit.zdb_id: 1468003-8
    detail.hit.zdb_id: 29056-7
    SSG: 12
    SSG: 21,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...