GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2016
    In:  Proceedings of the National Academy of Sciences Vol. 113, No. 45 ( 2016-11-08), p. 12838-12843
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 113, No. 45 ( 2016-11-08), p. 12838-12843
    Abstract: Patients with early infantile epileptic encephalopathy (EIEE) are at increased risk for sudden unexpected death in epilepsy (SUDEP). De novo mutations of the sodium channel gene SCN8A , encoding the sodium channel Na v 1.6, result in EIEE13 (OMIM 614558), which has a 10% risk of SUDEP. Here, we investigated the cardiac phenotype of a mouse model expressing the gain of function EIEE13 patient mutation p.Asn1768Asp in Scn8a (Na v 1.6-N1768D). We tested Scn8a N1768D/+ mice for alterations in cardiac excitability. We observed prolongation of the early stages of action potential (AP) repolarization in mutant myocytes vs. controls. Scn8a N1768D/+ myocytes were hyperexcitable, with a lowered threshold for AP firing, increased incidence of delayed afterdepolarizations, increased calcium transient duration, increased incidence of diastolic calcium release, and ectopic contractility. Calcium transient duration and diastolic calcium release in the mutant myocytes were tetrodotoxin-sensitive. A selective inhibitor of reverse mode Na/Ca exchange blocked the increased incidence of diastolic calcium release in mutant cells. Scn8a N1768D/+ mice exhibited bradycardia compared with controls. This difference in heart rate dissipated after administration of norepinephrine, and there were no differences in heart rate in denervated ex vivo hearts, implicating parasympathetic hyperexcitability in the Scn8a N1768D/+ animals. When challenged with norepinephrine and caffeine to simulate a catecholaminergic surge, Scn8a N1768D/+ mice showed ventricular arrhythmias. Two of three mutant mice under continuous ECG telemetry recording experienced death, with severe bradycardia preceding asystole. Thus, in addition to central neuron hyperexcitability, Scn8a N1768D/+ mice have cardiac myoycte and parasympathetic neuron hyperexcitability. Simultaneous dysfunction in these systems may contribute to SUDEP associated with mutations of Scn8a .
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2016
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2017
    In:  Proceedings of the National Academy of Sciences Vol. 114, No. 9 ( 2017-02-28), p. 2383-2388
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 114, No. 9 ( 2017-02-28), p. 2383-2388
    Abstract: Patients with early infantile epileptic encephalopathy (EIEE) experience severe seizures and cognitive impairment and are at increased risk for sudden unexpected death in epilepsy (SUDEP). EIEE13 [Online Mendelian Inheritance in Man (OMIM) # 614558] is caused by de novo missense mutations in the voltage-gated sodium channel gene SCN8A . Here, we investigated the neuronal phenotype of a mouse model expressing the gain-of-function SCN8A patient mutation, p.Asn1768Asp (Na v 1.6-N1768D). Our results revealed regional and neuronal subtype specificity in the effects of the N1768D mutation. Acutely dissociated hippocampal neurons from Scn8a N1768D/+ mice showed increases in persistent sodium current ( I Na ) density in CA1 pyramidal but not bipolar neurons. In CA3, I Na,P was increased in both bipolar and pyramidal neurons. Measurement of action potential (AP) firing in Scn8a N1768D/+ pyramidal neurons in brain slices revealed early afterdepolarization (EAD)-like AP waveforms in CA1 but not in CA3 hippocampal or layer II/III neocortical neurons. The maximum spike frequency evoked by depolarizing current injections in Scn8a N1768D/+ CA1, but not CA3 or neocortical, pyramidal cells was significantly reduced compared with WT. Spontaneous firing was observed in subsets of neurons in CA1 and CA3, but not in the neocortex. The EAD-like waveforms of Scn8a N1768D/+ CA1 hippocampal neurons were blocked by tetrodotoxin, riluzole, and SN-6, implicating elevated persistent I Na and reverse mode Na/Ca exchange in the mechanism of hyperexcitability. Our results demonstrate that Scn8a plays a vital role in neuronal excitability and provide insight into the mechanism and future treatment of epileptogenesis in EIEE13.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2017
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...