GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2017
    In:  Scientific Reports Vol. 7, No. 1 ( 2017-03-02)
    In: Scientific Reports, Springer Science and Business Media LLC, Vol. 7, No. 1 ( 2017-03-02)
    Abstract: Hazards from gravity-driven instabilities on hillslope (termed ‘landquake’ in this study) are an important problem facing us today. Rapid detection of landquake events is crucial for hazard mitigation and emergency response. Based on the real-time broadband data in Taiwan, we have developed a near real-time landquake monitoring system, which is a fully automatic process based on waveform inversion that yields source information (e.g., location and mechanism) and identifies the landquake source by examining waveform fitness for different types of source mechanisms. This system has been successfully tested offline using seismic records during the passage of the 2009 Typhoon Morakot in Taiwan and has been in online operation during the typhoon season in 2015. In practice, certain levels of station coverage (station gap  〈  180°), signal-to-noise ratio (SNR ≥ 5.0), and a threshold of event size (volume  〉 10 6  m 3 and area 〉  0.20 km 2 ) are required to ensure good performance (fitness  〉  0.6 for successful source identification) of the system, which can be readily implemented in other places in the world with real-time seismic networks and high landquake activities.
    Type of Medium: Online Resource
    ISSN: 2045-2322
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2017
    detail.hit.zdb_id: 2615211-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Copernicus GmbH ; 2018
    In:  Natural Hazards and Earth System Sciences Vol. 18, No. 11 ( 2018-11-06), p. 2877-2891
    In: Natural Hazards and Earth System Sciences, Copernicus GmbH, Vol. 18, No. 11 ( 2018-11-06), p. 2877-2891
    Abstract: Abstract. One purpose of landslide research is to establish early warning thresholds for rainfall-induced landslides. Insufficient observations of past events have inhibited the analysis of critical rainfall conditions triggering landslides. This difficulty may be resolved by extracting the timing of landslide occurrences through analysis of seismic signals. In this study, seismic records of the Broadband Array in Taiwan for Seismology were examined to identify ground motion triggered by large landslides that occurred in the years 2005 to 2014. A total of 62 landslide-induced seismic signals were identified. The seismic signals were analyzed to determine the timing of landslide occurrences, and the rainfall conditions at those times – including rainfall intensity (I), duration (D), and effective rainfall (Rt) – were assessed. Three common rainfall threshold models (I–D, I–Rt, and Rt–D) were compared, and the crucial factors of a forecast warning model were found to be duration and effective rainfall. In addition, rainfall information related to the 62 landslides was analyzed to establish a critical height of water model, (I-1.5)⋅D=430.2. The critical height of water model was applied to data from Typhoon Soudelor of 2015, and the model issued a large landslide warning for southern Taiwan.
    Type of Medium: Online Resource
    ISSN: 1684-9981
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2018
    detail.hit.zdb_id: 2069216-X
    detail.hit.zdb_id: 2064587-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Elsevier BV ; 2023
    In:  Engineering Geology Vol. 323 ( 2023-09), p. 107211-
    In: Engineering Geology, Elsevier BV, Vol. 323 ( 2023-09), p. 107211-
    Type of Medium: Online Resource
    ISSN: 0013-7952
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2023
    detail.hit.zdb_id: 1500329-2
    SSG: 19,1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Copernicus GmbH ; 2021
    In:  Earth Surface Dynamics Vol. 9, No. 3 ( 2021-06-07), p. 505-517
    In: Earth Surface Dynamics, Copernicus GmbH, Vol. 9, No. 3 ( 2021-06-07), p. 505-517
    Abstract: Abstract. Regional monitoring of rock slope failures using the seismic technique is rarely undertaken due to significant source location errors; this method also still lacks the signal features needed to understand events of this type because of the complex mass movement involved. To better comprehend these types of events, 10 known events along highways in Taiwan were analyzed. First, a hybrid method (GeoLoc) composed of cross-correlation-based and amplitude-attenuation-based approaches was applied, and it produced a maximum location error of 3.19 km for the 10 events. We then analyzed the ratio of local magnitude (ML) and duration magnitude (MD) and found that a threshold of 0.85 yields successful classification between rock slope failure and earthquake. Further, GeoLoc can retrieve the seismic parameters, such as signal amplitude at the source (A0) and ML of events, which are crucial for constructing scaling law with source volume (V). Indeed, Log(V) = 1.12 ML + 3.08 and V = 77 290 A00.44 derived in this study provide the lower bound of volume estimation, as the seismic parameters based on peak amplitudes cannot represent the full process of mass loss. Second, while video records correspond to seismic signals, the processes of toppling and sliding present column- and V-shaped spectrograms, respectively. The impacts of rockfall link directly to the pulses of seismic signals. Here, all spectrogram features of events can be identified for events with volumes larger than 2000 m3, corresponding to the farthest epicenter distance of ∼ 2.5 km. These results were obtained using the GeoLoc scheme for providing the government with rapid reports for reference. Finally, a recent event on 12 June 2020 was used to examine the GeoLoc scheme's feasibility. We estimated the event's volume using two scalings: 3838 and 3019 m3. These values were roughly consistent with the volume estimation of 5142 m3 from the digital elevation model. The physical processes, including rockfall, toppling, and complex motion behaviors of rock interacting with slope inferred from the spectrogram features were comprehensively supported by the video record and field investigation. We also demonstrated that the GeoLoc scheme, which has been implemented in Sinwulyu catchment, Taiwan, can provide fast reports, including the location, volume, and physical process of events, to the public soon after they occur.
    Type of Medium: Online Resource
    ISSN: 2196-632X
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2021
    detail.hit.zdb_id: 2736054-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: SSRN Electronic Journal, Elsevier BV
    Type of Medium: Online Resource
    ISSN: 1556-5068
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2022
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...