GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Bracco, Annalisa  (1)
  • 2005-2009  (1)
Material
Person/Organisation
Language
Years
  • 2005-2009  (1)
Year
  • 1
    Online Resource
    Online Resource
    American Meteorological Society ; 2008
    In:  Journal of Physical Oceanography Vol. 38, No. 9 ( 2008-09-01), p. 1992-2002
    In: Journal of Physical Oceanography, American Meteorological Society, Vol. 38, No. 9 ( 2008-09-01), p. 1992-2002
    Abstract: This paper extends A. Bracco and J. Pedlosky’s investigation of the eddy-formation mechanism in the eastern Labrador Sea by including a more realistic depiction of the boundary current. The quasigeostrophic model consists of a meridional, coastally trapped current with three vertical layers. The current configuration and topographic domain are chosen to match, as closely as possible, the observations of the boundary current and the varying topographic slope along the West Greenland coast. The role played by the bottom-intensified component of the boundary current on the formation of the Labrador Sea Irminger Rings is explored. Consistent with the earlier study, a short, localized bottom-trapped wave is responsible for most of the perturbation energy growth. However, for the instability to occur in the three-layer model, the deepest component of the boundary current must be sufficiently strong, highlighting the importance of the near-bottom flow. The model is able to reproduce important features of the observed vortices in the eastern Labrador Sea, including the polarity, radius, rate of formation, and vertical structure. At the time of formation, the eddies have a surface signature as well as a strong circulation at depth, possibly allowing for the transport of both surface and near-bottom water from the boundary current into the interior basin. This work also supports the idea that changes in the current structure could be responsible for the observed interannual variability in the number of Irminger Rings formed.
    Type of Medium: Online Resource
    ISSN: 1520-0485 , 0022-3670
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2008
    detail.hit.zdb_id: 2042184-9
    detail.hit.zdb_id: 184162-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...